Written Preliminary Exam or Literature Review: Methods for Functional Snippets. (modified from the mcfda package)
devtools::install_github("zhuolinsong/wpe")
library(wpe)
set.seed(1)
grid <- regular.grid()
sim <- sim1(50, 0.1, delta=.2, m_avg = 4, sigx='matern', mu=1)
library(ggplot2)
pp <- ggplot(data=sim$data,aes(x=argvals,y=y,group=subj)) + geom_line(color='gray') + geom_point(shape=18) + xlim(0, 1) + xlab("t") + ylab("Y(t)") + geom_line(data = data.frame(argvals=grid, y=sim$truemugrid, subj = 1), size = 1.5)
print(pp)
fit1 = face::face.sparse(sim$data,argvals.new = grid)
fit2 = covfunc(sim$t, sim$y, method='PACE', newt=grid, bw=sqrt(2)/2*(1-0.2), delta=1)
fit3 = covfunc(sim$t, sim$y, method='FOURIER', newt=grid, ext=0.1, p=10, domain=c(0,1))
fit4 = covfunc(sim$t, sim$y, method='SP', newt=grid, domain=c(0,1))
X = t(to.wide(sim$data,sim$grid)); p=length(sim$grid) A=getA1_new_cv(X, p, dl=0.91000.5, incre=0.11000.5, bw = NA, kernel = 'epan',sigma2hat= NA)$A fit5 = tcrossprod(A)
sim1 = list(data=sim$data, truemugrid=sim$truemugrid, truecovgrid=sim$truecovgrid, muface = fit1$mu.new, Cface = fit1$Chat.new, mupace = fit2$mu$fitted, Cpace = fit2$fitted, mufour = fit3$mu$fitted, Cfour = fit3$fitted, musnpt = fit4$mu$fitted, Csnpt = fit4$fitted, Csamc = fit5)
aggf = function(u){ mumseface = mean((u$muface - u$truemugrid)^2)/mean(u$truemugrid^2) covmseface = mean((u$Cface - u$truecovgrid)^2)/mean(u$truemugrid^2)
mumsepace = mean((u$mupace - u$truemugrid)^2)/mean(u$truemugrid^2) covmsepace = mean((u$Cpace - u$truecovgrid)^2)/mean(u$truemugrid^2)
mumsefour = mean((u$mufour - u$truemugrid)^2)/mean(u$truemugrid^2) covmsefour = mean((u$Cfour - u$truecovgrid)^2)/mean(u$truemugrid^2)
mumsesnpt = mean((u$musnpt - u$truemugrid)^2)/mean(u$truemugrid^2) covmsesnpt = mean((u$Csnpt - u$truecovgrid)^2)/mean(u$truemugrid^2)
covmsesamc = mean((u$Csamc - u$truecovgrid)^2)/mean(u$truemugrid^2) return(c(mumseface,covmseface, mumsepace,covmsepace, mumsefour,covmsefour, mumsesnpt,covmsesnpt, covmsesamc)) }
agg1 = aggf(sim1) A = matrix(agg1, 1) colnames(A) = c("mumseface","covmseface", "mumsepace","covmsepace", "mumsefour","covmsefour", "mumsesnpt","covmsesnpt", "covmsesamc") print(A)
Lin, Z. and Wang, J.-L. (2020+). Mean and covariance estimation for functional snippets. Journal of the American Statistical Association. Volume 117, 2022 - Issue 537
Lin, Z., Wang, J.-L. and Zhong, Q. (2021). Basis expansions for functional snippets. Biometrika, Volume 108, Issue 3, September 2021, Pages 709–726
Zhang, A., and Chen, K. (2022). Nonparametric covariance estimation for mixed longitudinal studies, with applications in midlife women's health. Statistica Sinica 32 (2022), 1-21.
Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional Data Analysis for Sparse Longitudinal Data. Journal of the American Statistical Association. 100(470): 577-590.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.