covfunc | R Documentation |
Estimate the cov function from functional data/snippets.
covfunc( t, y, newt = NULL, mu = NULL, weig = NULL, method = c("FOURIER", "PACE", "SP"), ... )
t |
a list of vectors (for irregular design) or a vector (for regular design) containing time points of observations for each individual; each vector should be in ascending order. |
y |
a list of vectors (for irregular design) or a matrix (for regular design) containing the observed values at |
newt |
a list of vectors or a vector containing time points of observations to be evaluated; if NULL, then |
mu |
the known or estimated mean function object; it must be a scalar (viewed as a constant function), a function handle, or an object obtained by calling |
weig |
a vector of |
method |
estimation method, 'PACE' or 'FOURIER' or 'SP' (for semiparametric method) |
... |
other parameters required depending on the |
tuning |
tuning method to select possible tuning parameters |
When method='PACE'
, additional parameters are
kernel
kernel type; supported are 'epanechnikov', "rectangular", "triangular", "quartic", "triweight", "tricube", "cosine", "gauss", "logistic", "sigmoid" and "silverman"; see https://en.wikipedia.org/wiki/Kernel_(statistics) for more details.
deg
degree of the local polynomial regression; currently only deg=1
is supported.
bw
bandwidth
When method='FOURIER'
, additional parameters are
q
number of basis functions; if NULL
then selected by tuning
method
rho
roughness penalty parameter; if NULL
then selected by tuning
method
ext
extension margin of Fourier extension; if NULL
then selected by tuning
method
domain
time domain; if NULL
then estimated by (min(t),max(t))
When method='SP'
, additional parameters are
domain
time domain; if NULL
then estimated by (min(t),max(t))
corf
function of the form function(theta,x,y)
that specifies the correlation structure with parameter theta
; If NULL then Matern correlation is used.
sig2e
variance of measurement error; if NULL
the automatically calculated by the calling sigma2
sig2x
variance function; a function or an object generated by varfunc
; if NULL
then automatically estimated by calling varfunc
pfunc
penalty function on the estimation; Not used yet.
theta0
Initial value for the parameter theta
to be estimated; NULL
by default
lb
vector of lower bound of theta
; if NULL
then set to -Inf
for all coordinate
ub
vector of upper bound of theta
; if NULL
then set to Inf
for all coordinate
D
dimension of theta
an object of the class 'covfunc' containing necessary information to predict/evaluate the estimated covariance function and the following output:
When method='PACE'
, additional parameters are
fitted
fitted value at the grid spanned by newt
delta
the largest span among all subjects; note that it is not normalized by the span of the whole study.
bw
selected bandwidth by tuning
method if NULL
is the input for bw
.
mu
estimated mean function if NULL
is the input.
When method='FOURIER'
, additional parameters are
fitted
fitted value at the grid spanned by newt
q
selected q
if NULL
is the input
rho
selected rho
if NULL
is the input
ext
selected ext
if NULL
is the input
C
estimated coefficients
mu
estimated mean function if NULL
is the input.
When method='SP'
, additional parameters are
fitted
fitted value at the grid spanned by newt
domain
time domain; if NULL
then estimated by (min(t),max(t))
.
rho
estimated function of the form function(x,y)
of the correlation structure.
sig2e
estiamted variance of measurement error if NULL
is the input.
sig2x
estiamted variance function if NULL
is the input.
theta
estimated parameters for the correlation structure.
mu
estimated mean function if NULL
is the input.
Lin2020bmcfda
\insertRefLin2020mcfda
\insertRefYao2005mcfda
mu <- function(s) sin(2*pi*s) D <- synfd::sparse.fd(mu=mu, X=synfd::gaussian.process(), n=100, m=5) mu.obj <- meanfunc(D$t,D$y,newt=NULL,method='PACE', tuning='cv',weig=NULL,kernel='gauss',deg=1) cov.obj <- covfunc(D$t,D$y,newt=NULL,mu=mu.obj,method='FOURIER', tuning='cv',weig=NULL,domain=c(0,1)) cov.hat <- predict(cov.obj,regular.grid())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.