cvaretnts | R Documentation |
cvaretnts
calculates Conditional Value at Risk (CVaR, or expected shortfall ES)
of the NTS market model with parameters (\alpha, \theta, \beta, \gamma, \mu)
.
If only three parameters are given, it calculates CVaR
of the standard NTS distribution with parameter (\alpha, \theta, \beta)
cvaretnts(eps, ntsparam)
eps |
the significant level for CVaR. Real value between 0 and 1. |
ntsparam |
A vector of the NTS parameters |
CVaReturn of the NTS distribution.
Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- c(0.01,0.05)
q <- cvaretnts(u, ntsparam)
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
u <- c(0.01,0.05)
q <- cvaretnts(u, ntsparam)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
u <- c(0.01,0.05)
q <- cvaretnts(u, ntsparam)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.