fitstdnts | R Documentation |
fitstdnts
fit parameters (\alpha, \theta, \beta)
of the standard NTS distribution.
This function using the curvefit method between the empirical cdf and the standard NTS cdf.
fitstdnts(rawdat)
fitstdnts(rawdat), ksdensityflag = 1
fitstdnts(rawdat, initialparam = c(alpha, theta, beta))
fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), ksdensityflag = 1
fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), maxeval = 100, ksdensityflag = 1
rawdat |
Raw data to fit the parameters. |
initialparam |
A vector of initial standard NTS parameters.
This function uses the |
maxeval |
Maximum evaluation number for |
ksdensityflag |
This function fit the parameters using the curvefit method between the empirical cdf and the standard NTS cdf.
If |
Estimated parameters
Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(evmix)
library(Matrix)
library(quantmod)
library("temStaR")
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2013-1-1", to = "2023-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)
ret <- diff(log(pr))
stdret <- (ret-mean(ret))/sd(ret)
stdntsparam <- fitstdnts(stdret)
Femp = ecdf(stdret)
x = seq(from=min(stdret), to = max(stdret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(stdntsparam))
plot(x,ncdf,type = 'l', col = "red")
lines(x,cemp, type = 'l', col = "blue")
a = density(stdret)
p = dnts(x,stdntsparam)
plot(x,p,type = 'l', col = "red", ylim = c(0, max(a$y, p)))
lines(a,type = 'l', col = "blue")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.