Description Usage Arguments Details Value Author(s) Examples

This method performs a search of all sets of hierarchy preserving models. The search criteria for best fit can be R^2, adjusted R^2, AIC, and BIC. the best models for each size of models are reported.

1 2 3 |

`formula` |
a |

`data` |
an object of class |

`method` |
a |

`nbest` |
an |

`minSize` |
an integer scalar - smallest size of model to be reported. NULL defaults to size of 1. |

`maxSize` |
integer scalar - largest size of model to be reported. NULL defaults to the number of terms specified in the formula parameter. |

`timeOut` |
a |

`altOut` |
a logical scalar - TRUE indicates a request for the alternate returned object. |

`mem` |
a numeric scalar - identifies the amount of memory, measured in gig, available for the the hleap function. |

`...` |
other potential arguments. These are arguments which would be passed to lm such as weights, subsets, etc. |

The search algorithm uses a binary tree approach. The tree branches based on models which contain or do not contain a particular model term. The algorithm starts with all provided terms in the model. The dropped term branch is searched first. The term with the smallest reduction in the search method criteria is dropped. Thus the algorithm attempts to search the best models first, as determined by the search method critera.

The search algorithm may not need to build all possible models. The algorithm determines if all further reductions of the current model will not produce a best subset model. If so, the remainder of the branch will be not be searched. When the algorithm fits a model, the search criteria for that model and the set of model nested within this model by dropping the right most terms dropped are also calculated.

The best subsets are grouped by number of terms. The degrees of freedom for models with the same number of terms may vary.

If the algorithm is stopped by user provided search time limit, the algorithm may not have identified the best subsets for each number of terms requested.

The amount of memory needed to run the algorithm can be large. If the algorithm needs more memory than what the mem parameter states is available, an error message is produced and the function stops.

Offsets are assumed to be in the column space of the X matrix by lm and summary.lm. The use of offsets which remove a column of the X matrix in algorithm which searches all models requires care. hleaps will consider models which will result in the offsets is not in the column space of the X matrix. The calculation of R^2 or adjusted R^2 from hleaps will not match the calculation from summary.lm in this case. If one has an application of offset which is not in the column space of X, hleaps will correctly prefrom the search based on R^2 or adjusted R^2.

An object of class `list`

.

For the altOut = FALSE

which - a logical matrix. Each row can be used to select the columns of x in the respective model. The logical matrix includes

size - an integer

`vector`

. The number of variables, including intercept if any, in the model“RSS”, “r2”, “adjr2”, “AIC”, or “BIC” - a numeric vector lists the value of the chosen model selection statistic for each model

label a character vector - names for the columns, terms, of x

df - an integer vector. The number of degrees of freedom for the model

For altOut = TRUE

modelInfo - a data.frame each row represents an individual model. First column indicates the number of terms in the select model. Second column represents the number of degrees of freedom in model. Third column states the individual ranking of the model. Fourth column is the value of the selected search criteria for model. Remaining columns can be used to select the terms in model, based on ordering label.

label - a character vector a vector containing term names in matching order to those found in modelInfo

executionInfo - a character vector detailing the number of model subsets examined and the amount of time the algorithm ran.

Mark Banghart <[email protected]>, Douglas Bates, Arun Srinivasan <[email protected]>

1 2 3 4 5 6 7 8 9 10 11 12 | ```
set.seed(21564)
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
x4 <- rnorm(100)
y <- rnorm(100)
# Example method with alternative output
hleapsOutAlt <- hleaps(y~(x1+x2+x3+x4)^2, altOut = TRUE)
# Example method with standard leaps output
hleapsOutStandard <- hleaps(y~(x1+x2+x3+x4)^2, altOut = FALSE)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.