Description Usage Arguments Value Author(s) References See Also Examples
Computation of the pseudo mrp-value from a resampling based feature
ranking strategy. qtl represents the fraction of presumedly 
informative features. The decision is based on the average rank across all 
resampling steps. 1-qtl represents the fraction of features that serves 
to estimate the null distribution of ranks (i.e. ranks of uninformative variables).
| 1 |   fs.mrpval(x,qtl=0.75)
 | 
| x | A list returned from  | 
| qtl | A numeric value of probability with values in [0,1]. | 
A list with components:
| stats | Original feature ranking statistics. | 
| fs.rank | Feature ranking vector. | 
| fs.order | Feature order vector. | 
| sdrank | Feature rank standard deviation. | 
| mrpval | Individual feature mrp-value. | 
| Ug | Uninformative variables. | 
| nnull | Total number of uninformative variables. | 
| qtl | Quantile  | 
David Enot dle@aber.ac.uk and Wanchang Lin wll@aber.ac.uk
Zhang, C., Lu,X. and Zhang, X. (2006). Significance of Gene Ranking for Classification of Microarray Samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, VOL. 3, NO. 3, pp. 312-320.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ## load abr1
data(abr1)
y   <- factor(abr1$fact$class)
x <- preproc(abr1$pos , y=y, method=c("log10","TICnorm"),add=1)[,110:500]  
## Select classes 1 and 2
dat <- dat.sel(x, y, choices=c("1","2"))
x <- dat$dat[[1]]
y <- dat$cl[[1]]
## partitioning
pars   <- valipars(sampling="boot",niter=2,nreps=5)
tr.idx <- trainind(y,pars=pars)
## multiple rankings using AUC
z      <- feat.rank.re(x,y,method="fs.auc",pars = pars,tr.idx=tr.idx)
## Compute stability mr-p value using the 25% worst features as irrelevant
res <- fs.mrpval(z,qtl=0.75)
## print content of res
names(res)
## list of features to form the null distribution of ranks
print(res$Ug)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.