dp_means: Dirichlet Process K-Means Clustering

Description Usage Arguments Examples

View source: R/dp_means.R

Description

Use the Bayesian Dirichlet process to perform K Means Clustering.

Usage

1
dp_means(data, disp.param = 2, iter = 4000, tolerance = 0.001)

Arguments

data

a data frame or matrix of numeric variables

disp.param

The dispersion parameter. Set to higher values to get fewer clusters. The dispersion parameter is the expected average width of the clusters. Defaults to 2, but you should try different values.

iter

number of iterations. Defaults to 4000.

tolerance

defaults to .0001

Examples

1

abnormally-distributed/abdisttools documentation built on May 5, 2019, 7:07 a.m.