KIR: Kernel Inverse Regression

Description Usage Arguments Value References

View source: R/suffDimReduct.R

Description

Kernel inverse regression (KIR) is very similar to PIR (Zhu & Fang, 1996). Instead of using a polynomial representation of Y, Y is represented through a kernel function, k. The inverse regression E[X|Y] is calculted as E[Xk(Y-y)] / E[k(Y-y)]. The covariance of E[X|Y] is calculated as the average values of the transposed crossproduct of E[X|Y]-E[X], ie, Sigma = E[E[X|Y]-E[X] * E[X|Y]-E[X]']. The effective dimension reduction subspace is then estimated through the generalized eigenvalue problem GEV(Sigma, cov(X)).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
KIR(
  formula,
  data,
  rank = "all",
  kern = c("rbf", "gt", "cauchy", "spline", "laplace", "bessel", "anova"),
  sigma = "auto",
  order = 1,
  df = 3,
  lambda = 1e-04
)

Arguments

formula

a model formula

data

a data frame

rank

the desired number of sufficient predictors to return. the default is "all".

kern

the kernel function to be used. must be one of "rbf", (the default), "gt, "cauchy", "spline", "laplace", "bessel", or "anova".

sigma

the scale to be used for the kernel. defaults to "auto" which estimates the optimal sigma value using kernlab::sigest.

order

the order to be used for the bessel function.

df

the degrees of freedom to be used for the bessel kernel, anova kernel, and generalized t kernel. defaults to 3.

lambda

a tuning parameter for regularization. defaults to 1e-4.

Value

an sdr object

References

Zhu, L., Fang, K. (1996) Asymptotics for kernel estimate of sliced inverse regression. Ann. Statist. 24, 3, 1053-1068. doi:10.1214/aos/1032526955


abnormally-distributed/cvreg documentation built on May 3, 2020, 3:45 p.m.