Description Usage Arguments Value References
View source: R/suffDimReduct.R
Unlike most other sufficient dimension reduction methods in this package
the outer product of gradients (OPG) method does not utilize the inverse regression of
E[X | Y] to estimate the central subspace. Rather, it uses a kernel method to calculate
the central mean subspace of E[Y | X] directly.
1. The algorithm procedes by using a kernel function K to calculate two matrices, A and B:
\hat { A } = ∑ _ { j = 1 } ^ { n }≤ft[\begin{bmatrix}1 \\ x_{j}-X_{i}\end{bmatrix} \begin{bmatrix}1 \\ x_{j}-X_{i}\end{bmatrix}^{T} κ ≤ft( \frac{X_{j} - X_{i}}{h} \right) \right]
\hat { B } = ∑ _ { j = 1 } ^ { n } ≤ft[ \begin{bmatrix}1 \\ x_{j}-X_{i}\end{bmatrix}^{T} Y_{j} κ ≤ft(\frac{x_{j} - X_{i}}{ h } \right) \right]
2. Next, calculate β, which consists of the 2nd, . . . , p+1-th entries of the vector
A^{-1} \cdot B. Then sum β β^{T}.
3. Perform the eigendecomposition of ∑{β β^{T}}. The eigenvectors
are the estimate of the central mean subspace.
1 2 3 4 5 6 7 8 |
formula |
a model formula |
data |
a data frame |
rank |
the desired number of sufficient predictors to return. the default is "all". |
kern |
the kernel function to be used. must be one of "rbf" (the default), "gt", "cauchy, "laplace", "bessel", or "anova". |
order |
the order to be used for the bessel function. |
df |
the degrees of freedom to be used for the bessel kernel and anova kernel. defaults to 3. |
an sdr object
Xia, Y., Tong, H., Li, W., & Zhu, L. (2002). An Adaptive Estimation of Dimension Reduction Space. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(3), 363-410.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.