reglev: Identify good and bad leverage points and regression outliers

Description Usage Arguments Value References

Description

Search for good and bad leverage points using the method advocated by Rousseuw and van Zomeren (1990). This supports regression on numeric outcomes assumed to follow a Gaussian-like distribution (i.e., not generalized linear models). Several options for calculating the robust mahalanobis distances and regression residuals are supported.

Usage

1
2
3
4
5
6
7
8
reglev(
  formula,
  data,
  plot = TRUE,
  interact = F,
  cov.method = c("mvv", "mcd", "mgv", "stu"),
  reg.method = c("lqd", "lta", "ts", "lad", "ols")
)

Arguments

formula

formula

data

data frame

plot

should it be plotted? defaults to TRUE.

interact

if TRUE you can click on points to identify which observation number to which a given point corresponds.

cov.method

The options are as follows:

- "mvv" - Minimum Variance Vector. The default option.
- "mcd" - Minimum (Regularized) Covariance Determinant
- "mgv" - Minimum Generalized Variance
- "stu" - Student's T Covariance Matrix

reg.method

The options are as follows:

- "lqd" - Least Quantile Differences Regression GS-Estimator
- "lta" - Least Trimmed Absolute Residuals Regression S-Estimator
- "ts" - Theil-Sen estimator
- "lad" - Least Absolute Deviations Regression Estimator
- "ols" - Ordinary Least Squares Non-Robust Regression Estimator

Value

a plot or a list.

References

Rousseuw, P.J.; van Zomeren, B.C. (1990) Unmasking Multivariate Outliers and Leverage Points. Journal of the American Statistical Association. 85(411):633-639 doi:10.1080/01621459.1990.10474920


abnormally-distributed/cvreg documentation built on May 3, 2020, 3:45 p.m.