Description Usage Arguments Value References
This fits an penalized elastic net s-estimator with M-estimation step (making this an MM-estimator) using the square root method for selecting an optimal penalty parameter. No cross validation is required. Data are automatically unit scaled and centered using the Yohai and Zou τ location and scale estimate. Coefficients are returned on the original scale of the inputs. Hence, it is not neccessary to center and/or standardize the inputs here.
1 2 3 4 5 6 7 8 | sqrtPENSEM(
formula,
data,
alpha = 0.5,
delta = 0.293,
conf.level = 0.95,
alg = c("lars", "dal")
)
|
formula |
a model formula |
data |
a data frame |
alpha |
a value between 0 and 1 for the mixing parameter. defaults to 0.5. |
delta |
the breakdown point for the robust estimator. the default is 0.293, somewhat arbitrarily (it is the breakdown point of the Theil-Sen estimator). the value must be greater than zero and at most 0.50. |
conf.level |
the confidence level to use in setting the penalty. the default is 0.95. |
alg |
should the augmented LARS ("lars") be used (the default), or should the Dual Augmented Lagrangian ("dal") option be used? |
a model fit
Belloni A.; Chernozhukov, V.; Wang, L. (2011) Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 98(4):791-806.
Freue, G.V.C.; Kepplinger, D; Salibián-Barrera, M; Smucler, E. (2019) Robust elastic net estimators for variable selection and identification of proteomic biomarkers. Ann. Appl. Stat. 13(4):2065-2090. doi:10.1214/19-AOAS1269.
van de Geer S. (2016) The Square-Root Lasso. In: Estimation and Testing Under Sparsity. Lecture Notes in Mathematics, vol 2159. Springer, Cham
Raninen , E.; Ollila, E. (2017) Scaled and square-root elastic net. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 4336-4340. doi: 10.1109/ICASSP.2017.7952975
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.