library(tidyverse)
library(asbtools)
x = "Desktop/data/usa_spending/fpds/1978/1978.gz.parquet"
data <- pq_read(x = x, as_data_frame = F, to_duck = F)
char_var <- c("name_agency_award", "name_office_award", "name_vendor")
amt_var <- "amount_obligation"
data %>%
tbl_arrow_summarise(
distinct_variables = char_var,
amount_variables = amt_var,
top_variables = char_var,
which_max_variables = char_var,
calculation_variable = amt_var,
median_variables = amt_var,
mean_variables = amt_var,
unique_variables = char_var[[1]],
min_variables = amt_var,
variance_variables = amt_var,
sd_variables = amt_var,
max_variables = amt_var,
which_min_variables = char_var,
count_variable = "count_actions",
to_arrow_table = T
)
data %>%
tbl_arrow_summarise(
distinct_variables = char_var,
amount_variables = amt_var,
top_variables = char_var,
which_max_variables = char_var,
calculation_variable = amt_var,
median_variables = amt_var,
mean_variables = amt_var,
unique_variables = char_var[[1]],
min_variables = amt_var,
variance_variables = amt_var,
sd_variables = amt_var,
max_variables = amt_var,
which_min_variables = char_var,
count_variable = "count_actions",
to_arrow_table = F
)
data %>%
tbl_arrow_summarise(
widen_variable = "type_action",
distinct_variables = char_var,
amount_variables = amt_var,
top_variables = char_var,
which_max_variables = char_var,
calculation_variable = amt_var,
median_variables = amt_var,
mean_variables = amt_var,
unique_variables = char_var[[1]],
min_variables = amt_var,
variance_variables = amt_var,
sd_variables = amt_var,
max_variables = amt_var,
which_min_variables = char_var,
count_variable = "count_actions",
to_arrow_table = F
)
## grouped
d <- data %>%
tbl_arrow_summarise(
group_variables = "code_product_service",
distinct_variables = char_var,
amount_variables = amt_var,
top_variables = char_var,
which_max_variables = char_var,
calculation_variable = amt_var,
median_variables = amt_var,
mean_variables = amt_var,
unique_variables = char_var[[1]],
min_variables = amt_var,
variance_variables = amt_var,
sd_variables = amt_var,
max_variables = amt_var,
which_min_variables = char_var,
count_variable = "count_actions"
)
d %>%
asbviz::tbl_fct_lump(variable = "name_agency_award_which_max",
weight = "amount_obligation_total",
n_unique = 5) %>%
asbviz::hc_xy(
x = "amount_obligation_mean",
y = "amount_obligation_total",
name = "code_product_service",
transformations = c("log_x", "log_y"),
group = "name_agency_award_which_max_lumped"
)
data %>%
tbl_arrow_summarise(
group_variables = "code_product_service",
widen_variable = "type_action",
distinct_variables = char_var,
amount_variables = amt_var,
top_variables = char_var,
which_max_variables = char_var,
calculation_variable = amt_var,
median_variables = amt_var,
mean_variables = amt_var,
unique_variables = char_var[[1]],
min_variables = amt_var,
variance_variables = amt_var,
sd_variables = amt_var,
max_variables = amt_var,
which_min_variables = char_var,
count_variable = "count_actions"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.