# knitr::knit_hooks$set(optipng = knitr::hook_optipng)
# knitr::opts_chunk$set(optipng = '-o7')

knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(fig.align = "center")
knitr::opts_chunk$set(fig.width = 12)
knitr::opts_chunk$set(fig.height = 6)

library(immunarch)
# source("../R/testing.R")
# immdata = load_test_data()
data(immdata)

Sevral approaches to the estimation of repertoire diversity are implemented in the repDiversity function. The .method parameter similarly to abovementionned functions sets the means for diversity estimation. You can choose one of the following methods:

The .col parameter regulates what sequences and gene segments to choose. For example, if you want to estimate diversity on the nucleotide level, you need to supply .col = "nt", on the amino acid level - .col = "aa". If you want to estimate diversity of amino acid CDR3 sequences coupled with V gene segments, you need to provide .col = "aa+v". By default .col = "aa".

# Compute statistics and visualise them
# Chao1 diversity measure
div_chao <- repDiversity(immdata$data, "chao1")

# Hill numbers
div_hill <- repDiversity(immdata$data, "hill")

# D50
div_d50 <- repDiversity(immdata$data, "d50")

# Ecological diversity measure
div_div <- repDiversity(immdata$data, "div")

p1 <- vis(div_chao)
p2 <- vis(div_chao, .by = c("Status", "Sex"), .meta = immdata$meta)
p3 <- vis(div_hill, .by = c("Status", "Sex"), .meta = immdata$meta)

p4 <- vis(div_d50)
p5 <- vis(div_d50, .by = "Status", .meta = immdata$meta)
p6 <- vis(div_div)

p1 + p2
p3 + p6
p4 + p4
imm_raref <- repDiversity(immdata$data, "raref", .verbose = F)

p1 <- vis(imm_raref)
p2 <- vis(imm_raref, .by = "Status", .meta = immdata$meta)

p1 + p2
repDiversity(immdata$data, "raref", .verbose = F) %>% vis(.log = TRUE)


abrown435/immunarch-test documentation built on July 29, 2020, 12:04 a.m.