##########
# File: aa_properties.R
##########
# cdrProp <- function (.data, .prop = c("hydro", "polarity+turn"), .region = c("vhj", "h", "v", "j")) {
# proplist = lapply(.prop, function(.prop) { chooseprop(.prop) })
#
# if (!has_class(.data, "list")) {
# .data = list(Data = .data)
# }
#
# data("aaproperties")
#
# res = .data[IMMCOL$cdr3aa]
#
# for (property in proplist){
# new = .data %>%
# select(IMMCOL$cdr3aa) %>%
# mutate(hydro = aapropeval(IMMCOL$cdr3aa, property)) %>%
# collect()
#
# colnames(new) <- c("IMMCOL$cdr3aa", property)
# res <- dplyr::bind_cols(res, new[property])
# }
#
# add_class(res, "immunr_cdr_prop")
# }
# chooseprop <- function(prop) {
# switch(prop,
# alpha = "alpha",
# beta = "beta",
# charge = "charge",
# core = "core",
# hydro = "hydropathy",
# ph = "pH",
# polar = "polarity",
# rim = "rim",
# surf = "surface",
# turn = "turn",
# vol = "volume",
# str = "strength",
# dis = "disorder",
# high = "high_contact",
# stop("Unknown property name"))
# }
#
# aapropeval <- function(seq, col){
# aaproperty <- AA_PROP[,c("amino.acid", col)]
# seq <- strsplit(x = seq, split = "")
# aaseqpropvalue <- lapply(seq, function(seq) {
# sum(aaproperty[seq, ][[col]], na.rm = TRUE) / length(seq) })
# return(aaseqpropvalue)
# }
#
# cdrPropAnalysis <- function (.data, .method = c("t.test")) {
#
# }
##########
# File: graph.R
##########
# mutationNetwork <- function (.data, .method = c("hamm", "lev"), .err = 2) {
# require(igraph)
# UseMethod("mutationNetwork")
# }
#
# mutationNetwork.character <- function (.data, .method = c("hamm", "lev"), .err = 2) {
# add_class(res, "immunr_mutation_network")
# }
#
# mutationNetwork.immunr_shared_repertoire <- function (.data, .method = c("hamm", "lev"), .err = 2) {
# add_class(res, "immunr_mutation_network")
# }
#
# mutationNetwork.tbl <- function (.data, .col, .method = c("hamm", "lev"), .err = 2) {
# select_(.data, .dots = .col)
# add_class(res, "immunr_mutation_network")
# }
#
# mut.net = mutationNetwork
##########
# File: post_analysis.R
#########
# overlap => distance matrix
# gene usage => N-dimensional vector of values
# diversity => vector of values
# (both) vector of values => distance matrix
# N-dimensional vector of values => clustering
# N-dimensional vector of values => dimensionality reduction
# N-dimensional vector of values => statistical test
# N-dimensional vector of values => grouped statistical test
# vector of values => grouped statistical test
# distance matrix => clustering
# distance matrix => dimensionality reduction
# distance matrix => vis
# dimensionality reduction => clustering
# dimensionality reduction => vis
# clustering => vis
# statistical test => vis
# grouped statistical test => vis
# distance matrix
# - cor
# - js
# - cor
# - cosine
# clustering
# - hclust
# - dbscan
# - kmeans
# dimensionality reduction
# - tsne
# - pca
# - mds
# stat test / grouped stat test
# - kruskall
# - wilcox
# postAnalysis <- function (.data)
# immunr_clustering_preprocessing <- function (...) {
# check for the right input class
# preprocess data somehow
# }
##########
# File: stat_tests.R
#########
#' #' Statistical analysis of groups
#' #'
#' immunr_permut <- function () {
#' stop(IMMUNR_ERROR_NOT_IMPL)
#' }
#'
#' # groups
#' immunr_mann_whitney <- function () {
#' stop(IMMUNR_ERROR_NOT_IMPL)
#' }
#'
#' immunr_kruskall <- function (.dunn = T) {
#' stop(IMMUNR_ERROR_NOT_IMPL)
#' }
#'
#' immunr_logreg <- function () {
#' stop(IMMUNR_ERROR_NOT_IMPL)
#' }
##########
# File: metadata.R
#########
# read_metadata <- function (.obj) {
#
# }
#
#
# write_metadata <- function (.obj) {
#
# }
#
#
# check_metadata <- function (.data, .meta) {
# .meta = collect(.meta)
#
# (length(.data) == length(unique(names(.data)))) &
# (length(.meta$Sample) == length(unique(.meta$Sample))) &
# (sum(!(names(.data) %in% .meta$Sample)) == 0)
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.