The goal of geneJAM is to help clustering outcome components (traits) that share some feature (genetic component) using polygenic risk scores (PRS).
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("abuchardt/geneJAM")
This is a basic example on simulated data:
library(geneJAM)
N <- 1000 #
q <- 10 #
p <- 5000 #
set.seed(1)
# Sample 1
X0 <- matrix(rbinom(n = N*p, size = 2, prob = 0.3), nrow=N, ncol=p)
B <- matrix(0, nrow = p, ncol = q)
B[1, 1:2] <- 1
B[3, 3] <- 2
Y0 <- X0 %*% B + matrix(rnorm(N*q), nrow = N, ncol = q)
Compute polygenic scores and coefficients
psobj <- ps.geneJAM(X0, Y0)
ps <- psobj$PS
beta <- psobj$beta
Create new sample
X <- matrix(rbinom(n = N*p, size = 2, prob = 0.3), nrow=N, ncol=p)
Y <- X %*% B + matrix(rnorm(N*q), nrow = N, ncol = q)
PS <- X %*% beta
Run geneJAM
fit <- geneJAM(PS, Y)
Plot mean standard error curve
plot(fit, 1)
Plot estimated optimal adjacency matrix
plot(fit, 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.