Description Usage Arguments Details Value Examples
View source: R/optim.noconst.ordi.R
Estimates the cumulative logistic coefficients alpha
in the case of multinomial (or ordinal) data without constraint on the coefficients.
1 | optim.noconst.ordi(y, status, weight, param, x = NULL, var.list = NULL)
|
y |
a matrix of discrete (or ordinal) measurements (only for symptomatic subjects), |
status |
symptom status of all individuals, |
weight |
a matrix of |
param |
a list of measurement distribution parameters, here is a list |
x |
a matrix of covariates (optional). Default is |
var.list |
a list of integers indicating which covariates (taken from |
The values of explicit estimators are computed by logistic transformation of weighted empirical frequencies.
the function returns a list of estimated parameters param
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #data
data(ped.ordi)
status <- ped.ordi[,6]
y <- ped.ordi[,7:ncol(ped.ordi)]
data(peel)
#probs and param
data(probs)
data(param.ordi)
#e step
weight <- e.step(ped.ordi,probs,param.ordi,dens.prod.ordi,peel,x=NULL,
var.list=NULL,famdep=TRUE)$w
weight <- matrix(weight[,1,1:length(probs$p)],nrow=nrow(ped.ordi),
ncol=length(probs$p))
#the function
optim.noconst.ordi(y[status==2,],status,weight,param.ordi,x=NULL,
var.list=NULL)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.