R/maximizeIndGauss.R

#' Maximization step for independent Gaussian
#'
#' @param X NxD data matrix
#' @param model Model parameters
#' @param prior Prior parameters
#' @return Updated model parameters
#' @export
#'
maximizeIndGauss = function(X, model, prior){

    alpha0 = prior$alpha
    beta0 = prior$beta
    m0 = prior$m
    v0 = prior$v
    W0 = prior$W
    Resp = model$Resp

    N = dim(X)[1]
    D = dim(X)[2]
    K = dim(Resp)[2]

    xbar = m = W = S = matrix(0, D, K)

    Nk = colSums(Resp) + 1e-10 # (10.51)
    alpha = alpha0 + Nk # (10.58)
    beta = beta0 + Nk # (10.60)
    v = v0 + Nk # (10.63)

    for(k in 1:K){
        xbar[,k] = (Resp[,k]%*%X)/Nk[k] # (10.52)
        x_cen = sweep(X, MARGIN = 2, STATS = xbar[,k], FUN = "-")
        S[,k] = (t(x_cen^2)%*%Resp[,k])/Nk[k] # (10.53)
        m[,k] = (beta0*m0+Nk[k]*xbar[,k])/beta[k] # (10.61)
        W[,k] = 1/W0 + Nk[k]*S[,k] + ((beta0*Nk[k])/(beta0+Nk[k]))*((xbar[,k]-m0)^2) # (10.62)
        W[,k] = 1/W[,k]
    }

    model$alpha = alpha
    model$m = m
    model$W = W
    model$v = v
    model$beta = beta
    model$S = S
    model$xbar = xbar
    model
}
acabassi/vimix documentation built on May 15, 2019, 10:36 p.m.