create_classifier: Create a NGBoostClassifier object

Description Usage Arguments Value

View source: R/ngboostRClassifier.R

Description

Create a NGBoostClassifier object

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
create_classifier(
  Base = DecisionTreeRegressor(),
  Dist = Bernoulli(),
  col_sample = 1,
  learning_rate = 0.01,
  minibatch_frac = 1,
  n_estimators = as.integer(500),
  natural_gradient = TRUE,
  random_state = NULL,
  tol = 1e-04,
  verbose = TRUE,
  verbose_eval = as.integer(100)
)

Arguments

Dist

Distribution should be used

col_sample

the percent subsample of columns to use in each boosting iteration

learning_rate

the learning rate

minibatch_frac

the percent subsample of rows to use in each boosting iteration

n_estimators

the number of boosting iterations to fit

natural_gradient

logical flag indicating whether the natural gradient should be used

tol

numerical tolerance to be used in optimization

verbose

flag indicating whether output should be printed during fitting

verbose_eval

increment (in boosting iterations) at which output should be printed

Value

A NGBoostRegressor object


acca3003/ngboostR documentation built on Dec. 18, 2021, 10:21 p.m.