create_regressor: Create a NGBoostRegressor object

Description Usage Arguments Value

View source: R/ngboostRRegressor.R

Description

Create a NGBoostRegressor object

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
create_regressor(
  Dist = NULL,
  Base = default_tree_learner,
  natural_gradient = TRUE,
  n_estimators = as.integer(500),
  learning_rate = 0.01,
  minibatch_frac = 1,
  col_sample = 1,
  verbose = TRUE,
  verbose_eval = as.integer(100),
  tol = 1e-04
)

Arguments

natural_gradient

logical flag indicating whether the natural gradient should be used

n_estimators

the number of boosting iterations to fit

learning_rate

the learning rate

minibatch_frac

the percent subsample of rows to use in each boosting iteration

col_sample

the percent subsample of columns to use in each boosting iteration

verbose

flag indicating whether output should be printed during fitting

verbose_eval

increment (in boosting iterations) at which output should be printed

tol

numerical tolerance to be used in optimization

Value

A NGBoostRegressor object


acca3003/ngboostR documentation built on Dec. 18, 2021, 10:21 p.m.