#' modelXGBoost Function
#'
#' This function allows you to check if a news article is authentic or fake.
#' It was trained using the xgboost package and the the Kaggle Fake News Dataset
#' @param fileName
#' @export
#' @examples
#' modelXGBoost(FileName)
#' @import xgboost
#' @import tm
#' @import text2vec
#' @import tools
#' @import SnowballC
#' @importFrom readr read_file
# library(xgboost)
# library(tm)
# library(text2vec)
# library(tools)
# library(SnowballC)
# library(readr)
#
#
# path_models = '/home/adelo/1-system/desktop/it_cct/5-Applied_Technology_Group_Project/gofaaaz-machine_learning/r_prog/1codes/0models/0finalModels'
# setwd(path_models)
#
# model_XGB = readRDS('kfn1-kfn2-dataset3_100_weighting_FALSE_removeSparseTerms_0_90_maxdepth_7_nrounds_20000_XGB_model.rds')
# vocab_train = readRDS('kfn1-kfn2-dataset3_100_weighting_FALSE_removeSparseTerms_0_90_maxdepth_7_nrounds_20000_vocab_train.rds')
modelXGBoost <- function(fileName){
if(class(fileName) == "character" && length(fileName) == 1) {
if(file.exists(fileName)){
if(file_ext(fileName) == "txt"){
data <- data.frame(read_file(fileName))
names(data)[1] <- "text"
}else if(file_ext(fileName) == "csv"){
data <- data.frame(readLines(fileName))
names(data)[1] <- "text"
}else{
print('The extension of the file entered is not supported. Make sure the file you are trying to read have a supported extension (.txt or .csv)')
}
} else{
print("Warning!! The parameter you have entered it is NOT a valid path for a text file. The function is analysing the text contained in the «character» object you have entered as parameter.")
data <- data.frame(fileName)
names(data)[1] <- "text"
}
}else{
print("Warning!! The parameter you have entered it is NOT a valid path for a file. The function is analysing the text contained in the object you have entered as parameter.")
data <- data.frame(fileName)
names(data)[1] <- "text"
}
# Text processing ----
text <- data$text
text <- tolower(text)
text <- removePunctuation(text)
text <- removeNumbers(text)
text <- removeWords(text, stopwords("en")) # stopwords
text <- stripWhitespace(text) # Remove blank space
text <- SnowballC::wordStem(text, language = "english") # Stemming Words
# Build a document-term matrix using the tokenized review text. This returns a dgCMatrix object ----
dtm <- create_dtm(itoken(text,
preprocessor = tolower,
tokenizer = word_tokenizer),
vocab_vectorizer(vocab_train))
# Making predictions from the model created and displaying a Confusion matrix ----
# Create our prediction probabilities
pred_prob <- predict(model_XGB, dtm)
# Set our cutoff
pred <- ifelse(pred_prob >= 0.5, 1, 0)
# pred <- ifelse(pred_prob >= 0.5, 0, 1)
prediction <- pred == 0
return(pred)
# return(prediction)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.