AUCell_run | R Documentation |
Runs AUCell (calculates the ranking + score genesets)
AUCell_run(
exprMat,
geneSets,
featureType = "genes",
keepZeroesAsNA = FALSE,
normAUC = TRUE,
aucMaxRank = ceiling(0.05 * nrow(exprMat)),
BPPARAM = NULL,
...
)
## S4 method for signature 'dgCMatrix'
AUCell_run(
exprMat,
geneSets,
featureType = "genes",
keepZeroesAsNA = FALSE,
normAUC = TRUE,
aucMaxRank = ceiling(0.05 * nrow(exprMat)),
BPPARAM = NULL
)
## S4 method for signature 'matrix'
AUCell_run(
exprMat,
geneSets,
featureType = "genes",
keepZeroesAsNA = FALSE,
normAUC = TRUE,
aucMaxRank = ceiling(0.05 * nrow(exprMat)),
BPPARAM = NULL
)
## S4 method for signature 'SummarizedExperiment'
AUCell_run(
exprMat,
geneSets,
featureType = "genes",
keepZeroesAsNA = FALSE,
normAUC = TRUE,
aucMaxRank = ceiling(0.05 * nrow(exprMat)),
BPPARAM = NULL,
assayName = NULL
)
exprMat |
Expression matrix (genes/regions as rows, cells as columns) The expression matrix can also be provided as one of the R/Bioconductor classes:
|
geneSets |
List of gene-sets (or signatures) to test in the cells.
The gene-sets should be provided as |
featureType |
Name for the rows (e.g. "genes"). Only for naming the rankings, not used internally. |
keepZeroesAsNA |
Convert zeroes to NA instead of locating randomly at the end of the ranking. |
normAUC |
Whether to normalize the maximum possible AUC to 1 (Default: TRUE). |
aucMaxRank |
Threshold to calculate the AUC (see 'details' section) |
BPPARAM |
Set to use multiple cores. Only used if 'splitByBlocks=TRUE' |
... |
Other arguments |
assayName |
Name of the assay containing the expression matrix (e.g. in SingleCellExperiment objects) |
In a simplified way, the AUC value represents the fraction of genes, within the top X genes in the ranking, that are included in the signature. The parameter 'aucMaxRank' allows to modify the number of genes (maximum ranking) that is used to perform this computation. By default, it is set to 5% of the total number of genes in the rankings. Common values may range from 1 to 20%.
Matrix with the AUC values (gene-sets as rows, cells as columns).
Includes AUCell_buildRankings
and AUCell_calcAUC
.
Next step in the workflow: AUCell_exploreThresholds
.
See the package vignette for examples and more details:
vignette("AUCell")
# This example is run using a fake expression matrix.
# Therefore, the output will be meaningless.
############# Fake expression matrix #############
set.seed(123)
exprMatrix <- matrix(data=sample(c(rep(0, 5000), sample(1:3, 5000, replace=TRUE))),
nrow=20,
dimnames=list(paste("Gene", 1:20, sep=""),
paste("Cell", 1:500, sep="")))
exprMatrix <- as(exprMatrix, "dgCMatrix")
# In this example we use two gene sets: 10 and 5 random genes
# (see other formatting examples at the end)
fewGenes <- sample(rownames(exprMatrix), 10)
otherGenes <- sample(rownames(exprMatrix), 5)
geneSets <- list(geneSet1=fewGenes,
geneSet2=otherGenes)
geneSets
# Calculate AUCell score for the genes in the sets
# To be able to run this fake example (which contain only 20 genes),
# we use aucMaxRank=5 (top 25% of the genes in the ranking)
cells_AUC <- AUCell_run(exprMatrix, geneSets, aucMaxRank=5)
## To run in paralell:
# cells_AUC <- AUCell_run(exprMatrix, geneSets, aucMaxRank=5,
# BPPARAM=BiocParallel::MulticoreParam(5))
# Format of the output:
cells_AUC
# To subset & access the AUC slot (as matrix):
cells_AUC[1:2,]
cells_AUC[,3:4]
getAUC(cells_AUC)[,1:5]
# These methods are also available:
dim(cells_AUC)
nrow(cells_AUC)
ncol(cells_AUC)
colnames(cells_AUC)[1:4]
rownames(cells_AUC)
#########################################################
# Alternatives for the input of gene sets:
# a) Character vector (i.e. only one gene-set)
# It will take the default name 'geneSet'
fewGenes
test <- AUCell_run(exprMatrix, fewGenes, aucMaxRank=5)
# b) List
geneSets <- list(geneSet1=fewGenes,
geneSet2=otherGenes)
geneSets
test <- AUCell_run(exprMatrix, fewGenes, aucMaxRank=5)
# c) GeneSet object (from GSEABase)
library(GSEABase)
geneSetOne <- GeneSet(fewGenes, setName="geneSetOne")
geneSetOne
test <- AUCell_run(exprMatrix, fewGenes, aucMaxRank=5)
# d) GeneSetCollection object (from GSEABase)
geneSetTwo <- GeneSet(otherGenes, setName="geneSetTwo")
geneSets <- GeneSetCollection(geneSetOne, geneSetTwo)
geneSets
test <- AUCell_run(exprMatrix, fewGenes, aucMaxRank=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.