This document provides code for updating the annual summer Cold Pool Index and average summer bottom temperature for the eastern Bering Sea continental shelf. The data used are collected during AFSC/RACE/GAP bottom trawl surveys of the eastern Bering Sea continental shelf and the code herein is used to interpolate bottom temperature (i.e., gear temperature in RACEBASE), calculate cold pool area and average bottom temperature, produce GeoTIFF rasters of temperature with a 5x5 km resolution, and update data sets that are included with the coldpool package.
library(coldpool) library(akgfmaps) # Set global options ---- fig_res <- 600 proj_crs <- coldpool:::ebs_proj_crs # Should data included in the package be updated with new data (i.e. for annual update)? ---- update_sysdata <- TRUE # Filepath to csv containing data to use for temperature interpolation ---- ebs_csv_path <- here::here("data", paste0("index_hauls_temperature_data.csv")) nbs_ebs_csv_path <- here::here("data", paste0("ebs_nbs_temperature_full_area.csv")) nbs_bt_years <- c(2010, 2017, 2018, 2019, 2021, 2022, 2023) nbs_sst_years <- c(2010, 2017, 2018, 2019, 2021, 2022, 2023)
Retrieve temperature data and write to: - /data/[date]_all_temperature_data.csv: Temperature data from all hauls. - /data/[date]_index_hauls_temperature_data.csv: Temperature data for haul type 3 with good performance. This is the data set that is used for cold pool index calculations.
# Update system data with new cold pool area estimates if(update_sysdata) { library(getPass) # Connect RODBC ---- channel <- get_connected() # Get temperature data and write csvs to data directory ---- coldpool:::get_data(channel = channel, include_preliminary_data = NULL) }
Conduct interpolation using candidate interpolation methods.
Writes: --GeoTIFF rasters of interpolated gear temperature are saved to output/raster/[variable] for each method and year.
# Interpolate gear temperature and write rasters for SEBS interpolation_wrapper(temp_data_path = ebs_csv_path, proj_crs = proj_crs, cell_resolution = 5000, # 5x5 km grid resolution select_years = 1982:2024, interp_variable = "gear_temperature", select_region = "sebs", methods = "Ste") # Interpolate surface temperature and write rasters for SEBS interpolation_wrapper(temp_data_path = ebs_csv_path, proj_crs = proj_crs, cell_resolution = 5000, # 5x5 km grid resolution select_years = 1982:2024, interp_variable = "surface_temperature", select_region = "sebs", methods = "Ste")
# Interpolate gear temperature and write rasters for full EBS interpolation_wrapper(temp_data_path = nbs_ebs_csv_path, proj_crs = proj_crs, cell_resolution = 5000, # 5x5 km grid resolution select_years = nbs_bt_years, interp_variable = "gear_temperature", select_region = "ebs", methods = "Ste") # Full EBS+NBS # Interpolate surface temperature and write rasters for full EBS interpolation_wrapper(temp_data_path = nbs_ebs_csv_path, proj_crs = proj_crs, cell_resolution = 5000, # 5x5 km grid resolution select_years = nbs_sst_years, interp_variable = "surface_temperature", select_region = "ebs", methods = "Ste") # Full EBS+NBS
Use surface and bottom temperature rasters to calculate cold pool area, mean bottom temperature, and mean surface temperature.
Writes: - /output/raster/[METHOD]_[YEAR]_gear_temperature.tif: GeoTIFF rasters of gear temperature, by method and year, with 5x5 km grid resolution.
# Calculate cold pool area and mean bottom temperature from SEBS rasters bottom_temp_files <- list.files(here::here("output", "raster", "sebs", "gear_temperature"), full.names = TRUE, pattern = "ste_") bt_df <- data.frame(YEAR = numeric(length = length(bottom_temp_files)), AREA_LTE2_KM2 = numeric(length = length(bottom_temp_files)), AREA_LTE1_KM2 = numeric(length = length(bottom_temp_files)), AREA_LTE0_KM2 = numeric(length = length(bottom_temp_files)), AREA_LTEMINUS1_KM2 = numeric(length = length(bottom_temp_files)), MEAN_GEAR_TEMPERATURE = numeric(length = length(bottom_temp_files)), MEAN_BT_LT100M = numeric(length = length(bottom_temp_files))) # Setup mask to calculate mean bottom temperature from <100 m strata ebs_layers <- akgfmaps::get_base_layers(select.region = "sebs", set.crs = proj_crs) lt100_strata <- ebs_layers$survey.strata |> dplyr::filter(Stratum %in% c(10, 20, 31, 32, 41, 42, 43)) |> dplyr::group_by(SURVEY) |> dplyr::summarise() for(i in 1:length(bottom_temp_files)) { bt_raster <- terra::rast(bottom_temp_files[i]) bt_df$YEAR[i] <- as.numeric(gsub("[^0-9.-]", "", names(bt_raster))) # Extract year bt_df$AREA_LTE2_KM2[i] <- bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = 2) bt_df$AREA_LTE1_KM2[i] <- bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = 1) bt_df$AREA_LTE0_KM2[i] <- bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = 0) bt_df$AREA_LTEMINUS1_KM2[i] <- bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = -1) bt_df$MEAN_GEAR_TEMPERATURE[i] <- mean(terra::values(bt_raster), na.rm = TRUE) lt100_temp <- terra::mask(bt_raster, lt100_strata, touches = FALSE) bt_df$MEAN_BT_LT100M[i] <- mean(terra::values(lt100_temp), na.rm = TRUE) } # Calculate mean surface temperature surface_temp_files <- list.files(here::here("output", "raster", "sebs", "surface_temperature"), full.names = TRUE, pattern = "ste_") sst_df <- data.frame(YEAR = numeric(length = length(bottom_temp_files)), MEAN_SURFACE_TEMPERATURE = numeric(length = length(surface_temp_files))) for(i in 1:length(surface_temp_files)) { sst_raster <- terra::rast(surface_temp_files[i]) sst_df$YEAR[i] <- as.numeric(gsub("[^0-9.-]", "", names(sst_raster))) # Extract year sst_df$MEAN_SURFACE_TEMPERATURE[i] <- mean(terra::values(sst_raster), na.rm = TRUE) } output_df <- dplyr::inner_join(bt_df, sst_df) output_df$LAST_UPDATE <- Sys.Date()
nbs_area <- akgfmaps::get_base_layers(select.region = "ebs", set.crs = coldpool:::ebs_proj_crs)$survey.area |> dplyr::filter(SURVEY == "NBS_SHELF") nbs_ebs_bt_files <- list.files(here::here("output", "raster", "ebs", "gear_temperature"), full.names = TRUE, pattern = "ste_") nbs_ebs_sst_files <- list.files(here::here("output", "raster", "ebs", "surface_temperature"), full.names = TRUE, pattern = "ste_") nbs_mean_temperature <- data.frame(YEAR = numeric(length = length(nbs_ebs_bt_files)), MEAN_GEAR_TEMPERATURE = numeric(length = length(nbs_ebs_bt_files)), MEAN_SURFACE_TEMPERATURE = numeric(length = length(nbs_ebs_bt_files))) for(i in 1:length(nbs_ebs_bt_files)) { nbs_bt_raster <- terra::rast(nbs_ebs_bt_files[i]) |> terra::mask(nbs_area, touches = FALSE) nbs_mean_temperature$YEAR[i] <- as.numeric(gsub("[^0-9.-]", "", names(nbs_bt_raster))) # Extract year nbs_mean_temperature$MEAN_GEAR_TEMPERATURE[i] <- mean(terra::values(nbs_bt_raster), na.rm = TRUE) nbs_mean_temperature$AREA_LTE2_KM2[i] <- nbs_bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = 2) nbs_mean_temperature$AREA_LTE1_KM2[i] <- nbs_bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = 1) nbs_mean_temperature$AREA_LTE0_KM2[i] <- nbs_bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = 0) nbs_mean_temperature$AREA_LTEMINUS1_KM2[i] <- nbs_bt_raster |> cpa_from_raster(raster_units = "m", temperature_threshold = -1) # Don't calculate SST if NBS data haven't been finalized if(file.exists(nbs_ebs_sst_files[i])) { nbs_sst_raster <- terra::rast(nbs_ebs_sst_files[i]) |> terra::mask(nbs_area, touches = FALSE) nbs_mean_temperature$MEAN_SURFACE_TEMPERATURE[i] <- mean(terra::values(nbs_sst_raster), na.rm = TRUE) } else { nbs_mean_temperature$MEAN_SURFACE_TEMPERATURE[i] <- NA } } nbs_mean_temperature <- nbs_mean_temperature |> dplyr::filter(YEAR != 2018) nbs_mean_temperature$LAST_UPDATE <- Sys.Date()
Update sysdata.rda with cold pool area, mean bottom temperature, mean surface temperature, and and 5-km resolution rasters of surface and bottom temperature.
# Write cold pool index and average gear temperature table to R/sysdata.R ---- # Need to update documentation and build/install after running this code. if(update_sysdata) { # Make surface temperature raster stack (multiplying by 1 resets the source) ebs_surface_temperature <- coldpool::make_raster_stack(file_path = here::here("output", "raster", "sebs", "surface_temperature"), file_name_contains = "ste_", file_type = ".tif", wrap = TRUE) # Make bottom temperature raster stack (multiplying by 1 resets the source) ebs_bottom_temperature <- coldpool::make_raster_stack(file_path = here::here("output", "raster", "sebs", "gear_temperature"), file_name_contains = "ste_", file_type = ".tif", wrap = TRUE) # Make surface temperature raster stack (multiplying by 1 resets the source) nbs_ebs_surface_temperature <- coldpool::make_raster_stack(file_path = here::here("output", "raster", "ebs", "surface_temperature"), file_name_contains = "ste_", file_type = ".tif", wrap = TRUE) # Make bottom temperature raster stack (multiplying by 1 resets the source) nbs_ebs_bottom_temperature <- coldpool::make_raster_stack(file_path = here::here("output", "raster", "ebs", "gear_temperature"), file_name_contains = "ste_", file_type = ".tif", wrap = TRUE) cpa_pre2021 <- read.csv(file = here::here("inst", "extdata", "old_method_cpa_temperature_2021.csv")) ebs_proj_crs <- coldpool:::ebs_proj_crs cold_pool_index <- output_df save(cpa_pre2021, ebs_proj_crs, cold_pool_index, nbs_mean_temperature, ebs_bottom_temperature, ebs_surface_temperature, nbs_ebs_bottom_temperature, nbs_ebs_surface_temperature, file = here::here("R", "sysdata.rda")) }
Update version number in DESCRIPTION and update documentation using:
devtools::document(roclets = c('rd', 'collate', 'namespace'))
After updating, reinstall the coldpool package:
Rcmd.exe INSTALL --no-multiarch --with-keep.source cold_pool
Check that the updated cold pool index data is included in the package.
print(coldpool:::cold_pool_index)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.