library(coldpool)
library(akgfmaps)

if(!dir.exists("plots")) {dir.create("plots")}

fig_res <- 600
cpa_palette <- c("#21dae7", "#0071ff", "#0000e3", "#000040")
max_year <- 2023
min_year <- max_year - 19 # Default for 20 panel cold pool maps

coldpool:::cold_pool_index$YEAR[order(coldpool:::cold_pool_index$AREA_LTE2_KM2)]
coldpool:::cold_pool_index$YEAR[order(-1*coldpool:::cold_pool_index$MEAN_GEAR_TEMPERATURE)]
coldpool:::cold_pool_index$YEAR[order(-1*coldpool:::cold_pool_index$MEAN_SURFACE_TEMPERATURE)]
cpi_df <- coldpool:::cold_pool_index |>
  dplyr::filter(YEAR <= max_year) |>
  dplyr::mutate(group = YEAR < 2020,
                var = "Cold Pool Index",
                cpi_rank = rank(AREA_LTE2_KM2))

cpi_sd <- sd(cpi_df$AREA_LTE2_KM2/1000)
cpi_mean <- mean(cpi_df$AREA_LTE2_KM2/1000)

plot_cpi_timeseries <- ggplot(data = cpi_df,
                              mapping = aes(x = YEAR,
                                            y = AREA_LTE2_KM2/1000,
                                            group = group,
                                            label = cpi_rank)) +
  geom_point(size = rel(2),
             color = "#000040") +
  geom_line(color = "#000040") +
  geom_hline(yintercept = cpi_mean,
             linetype = 2,
             color = "#000040") +
  geom_hline(yintercept = cpi_mean + c(cpi_sd, -1*cpi_sd),
             linetype = 3,
             color = "#000040") +
  scale_y_continuous(name = expression(bold("Cold Pool Extent"~("thousand"~km^2)))) +
  scale_x_continuous(name = "Year",
                     breaks = seq(1980,2020,4)) +
  facet_wrap(~var) +
  theme_bw() +
  theme(axis.title = element_text(color = "black", face = "bold"),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        panel.grid = element_blank(),
        legend.title = element_blank(),
        legend.position = "bottom",
        strip.text = element_text(size = 9,
                                  color = "white",
                                  face = "bold",
                                  margin = margin(0.5, 0, 0.5, 0, "mm")),
        strip.background = element_rect(fill = "#0055a4",
                                        color = NA))

ragg::agg_png(filename = here::here("plots", paste0(max_year, "_cold_pool_index.png")), 
    width = 6,
    height = 3, 
    units = "in",
    res = 300)
print(plot_cpi_timeseries)
dev.off()
sebs_layers <- akgfmaps::get_base_layers(select.region = "sebs",
                                         set.crs = coldpool:::ebs_proj_crs)

area_df <- coldpool:::cold_pool_index |>
  dplyr::filter(YEAR <= max_year) |>
  dplyr::mutate(lteminus1 = AREA_LTEMINUS1_KM2,
                lte0 = AREA_LTE0_KM2 - AREA_LTEMINUS1_KM2,
                lte1 = AREA_LTE1_KM2 - AREA_LTE0_KM2,
                lte2 = AREA_LTE2_KM2 - AREA_LTE1_KM2) |>
  dplyr::select(YEAR, lteminus1, lte0, lte1, lte2) |>
  reshape2::melt(id.vars = "YEAR") |>
  dplyr::mutate(variable = factor(variable, 
                                  levels = c( "lte2", "lte1", "lte0", "lteminus1"),
                                  labels = c("\u22642 \u00b0C", "\u22641 \u00b0C", "\u22640 \u00b0C", "\u2264-1 \u00b0C")),
                proportion = value/sebs_layers$survey.area$AREA_KM2)

stacked_area_plot <- ggplot() +
    geom_area(data = filter(area_df, YEAR < 2020),
            mapping = aes(x = YEAR,
                          y = proportion,
                          fill = variable)) +
    geom_area(data = filter(area_df, YEAR > 2020),
            mapping = aes(x = YEAR,
                          y = proportion,
                          fill = variable)) +
  scale_fill_manual(name = "Temperature", 
                    values = cpa_palette) +
  scale_y_continuous(name = "Proportion of EBS Shelf (Plus NW) Survey Area",
                     limits = c(0, 1),
                     expand = c(0, 0),
                     breaks = seq(0,1,0.1)) +
  scale_x_continuous(name = "Year", 
                     limits = c(1982, max_year + 0.25),
                     expand = c(0, 0),
                     breaks = seq(1982, max_year, 4)) +
  theme_bw() +
  theme(panel.grid.minor = element_blank(),
        axis.title = element_text(face = "bold"),
        axis.ticks = element_line(color = "black"),
        panel.border = element_rect(color = "black", fill = NA),
        panel.background = element_rect(color = "black", fill = NA),
        legend.position = c(0.2, 0.8),
        legend.title = element_blank())

ragg::agg_png(file = here::here("plots", paste0(max_year, "_stacked_temperature.png")), height = 4, width = 6, units = "in", res = 600)
print(stacked_area_plot)
dev.off()

stacked_area_simple_label_plot <- ggplot() +
    geom_area(data = filter(area_df, YEAR < 2020),
            mapping = aes(x = YEAR,
                          y = proportion,
                          fill = variable)) +
    geom_area(data = filter(area_df, YEAR > 2020),
            mapping = aes(x = YEAR,
                          y = proportion,
                          fill = variable)) +
  scale_fill_manual(name = "Temperature", 
                    values = viridis::mako(5, direction = -1, end = .8)) +
  scale_y_continuous(name = "Proportion of EBS Shelf Survey Area",
                     limits = c(0, 1),
                     expand = c(0, 0),
                     breaks = seq(0,1,0.1)) +
  scale_x_continuous(name = "Year", 
                     limits = c(1982, max_year + 0.25),
                     expand = c(0, 0),
                     breaks = seq(1982, max_year,4)) +
  theme_bw() +
  theme(panel.grid.minor = element_blank(),
        axis.title = element_text(face = "bold"),
        axis.ticks = element_line(color = "black"),
        panel.border = element_rect(color = "black", fill = NA),
        panel.background = element_rect(color = "black", fill = NA),
        legend.position = c(0.1, 0.8),
        legend.title = element_blank())

ragg::agg_png(file = here::here("plots", paste0(max_year, "_stacked_temperature_simple_label.png")), height = 4, width = 6, units = "in", res = 600)
print(stacked_area_simple_label_plot)
dev.off()

year_vec <- as.numeric(gsub("[^0-9.-]", "", names(terra::rast(coldpool:::ebs_bottom_temperature))))
start_year <- which(year_vec == min_year)
end_year <- which(year_vec == max_year)

for(i in start_year:end_year) {

  sel_layer_df <- as.data.frame(terra::rast(coldpool:::ebs_bottom_temperature)[[i]], 
                                na.rm = FALSE, 
                                xy = TRUE) |>
    tidyr::pivot_longer(cols = 3) |>
    sf::st_as_sf(coords = c("x", "y"),
                 crs = coldpool:::ebs_proj_crs) |>
    dplyr::rename(year = name,
                  temperature = value)  |>
    stars::st_rasterize()

    sel_layer_df$temperature <- cut(sel_layer_df$temperature, 
                                  breaks = c(-2, -1, 0, 1, 2))

    sel_layer_df <- sel_layer_df |>
      sf::st_as_sf() |>
      dplyr::group_by(temperature) |>
      dplyr::summarise(n = n()) |>
      dplyr::select(-n) |>
      dplyr::ungroup() |>
      sf::st_intersection(sebs_layers$survey.area)

  sel_layer_df$year <- year_vec[i]

  if(i == start_year) {
    bt_year_df <- sel_layer_df
  } else{
    bt_year_df <- dplyr::bind_rows(bt_year_df, sel_layer_df)
  }
}

cpa_palette <- c("#21dae7", "#0071ff", "#0000e3", "#000040")

panel_extent <- data.frame(y = c(52, 64),
                           x = c(-175, -156)) |>
  akgfmaps::transform_data_frame_crs(out.crs = coldpool:::ebs_proj_crs)

label_2020 <- data.frame(x = mean(panel_extent$x),
                         y = mean(panel_extent$y),
                         label = "No\nSurvey",
                         year = 2020) |> 
  dplyr::filter(year <= max_year)

cold_pool_cbar <- coldpool::legend_discrete_cbar(breaks = c(-Inf, -1, 0, 1, 2),
                                                 colors = rev(cpa_palette),
                                                 legend_direction = "vertical",
                                                 font_size = 3.5,
                                                 width = 0.1,
                                                 expand_size.x = 0.3,
                                                 expand_size.y = 0.3,
                                                 expand.x = 0.2,
                                                 expand.y = 0.9,
                                                 spacing_scaling = 1,
                                                 text.hjust = 0,
                                                 font.family = "sans",
                                                 neat.labels = FALSE) + 
  annotate("text", 
           x = 1.1, 
           y = 2.05, 
           label =  expression(bold("Bottom\nTemperature"~(degree*C))), 
           size = rel(3.2)) + 
  theme(plot.margin = unit(c(-25, 0,0,-10), units = "pt"))

cold_pool_panels <- ggplot() +
  geom_sf(data = sebs_layers$akland, fill = "black", 
          color = NA) +
  geom_sf(data = sebs_layers$survey.area, fill = "grey75") +
  geom_sf(data = bt_year_df,
          mapping = aes(fill = temperature),
          color = NA) +
  geom_sf(data = sebs_layers$survey.area, 
          fill = NA, 
          color = "black") +
  geom_sf(data = sebs_layers$bathymetry) +
  geom_polygon(data = data.frame(x = panel_extent$x[c(1,2,2,1,1)],
                                 y = panel_extent$y[c(1,1,2,2,1)],
                                 year = 2020) |> dplyr::filter(year <= max_year),
               aes(x = x,
                   y = y),
               fill = "white") +
  geom_label(data = label_2020,
             aes(x = x,
                 y = y,
                 label = label),
             label.size = NA) +
  coord_sf(xlim = panel_extent$x, 
           ylim = panel_extent$y,
           expand = c(0,0)) +
  scale_x_continuous(name = "Longitude", 
                     breaks = c(-180, -170, -160)) + 
  scale_y_continuous(name = "Latitude", 
                     breaks = c(54, 58, 62)) +
  scale_fill_manual(name = expression("T"~(degree*C)),
                    values = rev(cpa_palette), 
                    drop = FALSE,
                    na.value = NA) +
  theme_bw() +
  theme(axis.title = element_blank(),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        panel.border = element_rect(color = "black", fill = NA),
        panel.background = element_rect(color = "black", fill = NA),
        strip.text = element_text(size = 9,
                                  color = "white",
                                  face = "bold",
                                  margin = margin(0.5, 0, 0.5, 0, "mm")),
        strip.background = element_rect(fill = "#0055a4",
                                        color = NA),
        legend.position = "none") +
  facet_wrap(~year, ncol = 4)

cold_pool_grid <- cowplot::plot_grid(
  cold_pool_panels,
  cowplot::plot_grid(NA, cold_pool_cbar, NA,
                     nrow = 3),
  rel_widths = c(0.9,0.2)
)

coldpool_with_area <-
  cowplot::plot_grid(
    cowplot::plot_grid(
      cold_pool_panels,
      stacked_area_plot +
        facet_wrap(~"Proportion of EBS Shelf Survey Area") +
        scale_y_continuous(name = "Proportion",
                           limits = c(0, 1),
                           expand = c(0, 0),
                           breaks = seq(0,1,0.1)) +
        theme(legend.position = "none", 
              plot.margin = unit(c(-5,5,5,5), units = "pt"),
              strip.text = element_text(size = 9,
                                        color = "white",
                                        face = "bold",
                                        margin = margin(0.5, 0, 0.5, 0, "mm")),
              strip.background = element_rect(fill = "#0055a4",
                                              color = NA)),
      rel_heights = c(0.75, 0.25),
      align = "h",
      nrow = 2),
    cowplot::plot_grid(NA, cold_pool_cbar, NA,
                       nrow = 3,
                       rel_heights = c(0.2, 0.6, 0.2)),
    rel_widths = c(0.9,0.2)
  )

ragg::agg_png(file = here::here("plots", paste0(max_year, "_coldpool_with_area.png")), height = 8, width = 6, units = "in", res = fig_res)
print(coldpool_with_area)
dev.off()

ragg::agg_png(file = here::here("plots", paste0(max_year, "_coldpool.png")), height = 6, width = 6, units = "in", res = fig_res)
print(cold_pool_grid)
graphics.off()
nbs_ebs_temp_breaks <- c(-Inf, seq(-1,8,1), Inf)
nbs_ebs_viridis_option <- "H" # viridis turbo palette

nbs_ebs_layers <- akgfmaps::get_base_layers(select.region = "ebs",
                               set.crs = coldpool:::ebs_proj_crs)

year_vec <- as.numeric(gsub("[^0-9.-]", "", names(terra::rast(coldpool:::nbs_ebs_bottom_temperature))))
end_year <- which(year_vec == max_year)

for(i in 1:end_year) {

  sel_layer_df <- as.data.frame(terra::rast(coldpool:::nbs_ebs_bottom_temperature)[[i]], 
                                na.rm = FALSE, 
                                xy = TRUE) |>
    tidyr::pivot_longer(cols = 3) |>
    sf::st_as_sf(coords = c("x", "y"),
                 crs = coldpool:::ebs_proj_crs) |>
    dplyr::rename(year = name,
                  temperature = value)  |>
    stars::st_rasterize()

    sel_layer_df$temperature <- cut(sel_layer_df$temperature, 
                                  breaks = nbs_ebs_temp_breaks)

    sel_layer_df <- sel_layer_df |>
      sf::st_as_sf() |>
      dplyr::group_by(temperature) |>
      dplyr::summarise(n = n()) |>
      dplyr::select(-n) |>
      dplyr::ungroup() |>
      sf::st_intersection(nbs_ebs_layers$survey.area)

  sel_layer_df$year <- year_vec[i]

  if(i == 1) {
    bt_year_df <- sel_layer_df
  } else{
    bt_year_df <- dplyr::bind_rows(bt_year_df, sel_layer_df)
  }
}

# Union to combine strata 31, 32 into 30, etc.
nbs_ebs_agg_strata <- nbs_ebs_layers$survey.strata |>
  dplyr::mutate(agg_stratum = Stratum) |>
  dplyr::mutate(agg_stratum = replace(agg_stratum, agg_stratum %in% c(31,32), 30),
                agg_stratum = replace(agg_stratum, agg_stratum %in% c(41,42,43), 40),
                agg_stratum = replace(agg_stratum, agg_stratum %in% c(61,62), 60)) |> 
  dplyr::group_by(agg_stratum) |> 
  dplyr::summarise()

panel_extent <- data.frame(y = c(53, 67),
                           x = c(-174, -156)) |>
  akgfmaps::transform_data_frame_crs(out.crs = coldpool:::ebs_proj_crs)

n_temp_breaks <- length(nbs_ebs_temp_breaks)-1

ebs_nbs_temperature_map <- ggplot2::ggplot() +
  ggplot2::geom_sf(data = nbs_ebs_layers$akland, 
                   fill = "grey70", 
                   color = "black") +
  ggplot2::geom_sf(data = nbs_ebs_layers$survey.area, 
                   fill = "grey65") +
  ggplot2::geom_sf(data =  bt_year_df |>
                       dplyr::filter(year == max_year),
                   mapping = aes(fill = temperature),
                   color = NA) +
  ggplot2::geom_sf(data = nbs_ebs_agg_strata, 
                   fill = NA,
                   color = "black") +
  ggplot2::geom_text(data = data.frame(x = -158.5, 
                                       y = 62.4, 
                                       lab = "Alaska") |>
                       akgfmaps::transform_data_frame_crs(out.crs = coldpool:::ebs_proj_crs),
                     mapping = aes(x = x,
                                   y = y,
                                   label = lab),
                     size = rel(8)) +
  ggplot2::coord_sf(xlim = panel_extent$x, 
                    ylim = panel_extent$y) +
  ggplot2::scale_x_continuous(name = "Longitude", 
                              breaks = nbs_ebs_layers$lon.breaks) + 
  ggplot2::scale_y_continuous(name = "Latitude", 
                              breaks = nbs_ebs_layers$lat.breaks) +
  ggplot2::scale_fill_manual(values = viridis_pal(option = nbs_ebs_viridis_option)(n_temp_breaks),
                             drop = FALSE) +
  theme_bw() +
  ggplot2::theme(axis.title = element_blank(),
                 axis.text = element_text(color = "black"),
                 axis.ticks = element_line(color = "black"),
                 panel.border = element_rect(color = "black", fill = NA),
                 panel.background = element_rect(color = "black", fill = NA),
                 legend.key.width = unit(12, "mm"),
                 legend.position = "none",
                 legend.direction = "horizontal", 
                 plot.margin = unit(c(5.5, 5.5,-25,5.5), units = "pt"))

temp_map_cbar <- coldpool::legend_discrete_cbar(breaks = nbs_ebs_temp_breaks,
                                                 colors = viridis::viridis_pal(option = nbs_ebs_viridis_option)(n_temp_breaks),
                                                 legend_direction = "horizontal",
                                                 font_size = 3,
                                                 width = 0.1,
                                                 expand_size.x = 0.3,
                                                 expand_size.y = 0.3,
                                                 expand.x = 0.3,
                                                 expand.y = 0.9,
                                                 spacing_scaling = 1,
                                                 text.hjust = 0.5,
                                                 font.family = "sans",
                                                 neat.labels = FALSE) + 
  annotate("text", 
           x = 1.15, 
           y = 3.5, 
           label =  expression(bold("Bottom Temperature"~(degree*C))), 
           size = rel(3.2)) + 
  theme(plot.margin = unit(c(0,0, 0, 5), units = "mm"))

ebs_nbs_map <- cowplot::plot_grid(ebs_nbs_temperature_map,
                   temp_map_cbar,
                   nrow = 2,
                   rel_heights = c(0.8,0.2))

ragg::agg_png(filename = here::here("plots", paste0(max_year, "_nbs_ebs_temperature_map.png")), width = 6, height = 6, units = "in", res = fig_res)
print(ebs_nbs_map)
dev.off()

# Four panel bottom and surface temperature maps

max_year <- 2023
skip_year <- 2020
n_panels <- 4
grid_layout <- c(2,2)
nbs_years <- c(2010, 2017, 2019, 2021, 2022, 2023)
plot_years <- (max_year-n_panels+ifelse(max_year-n_panels < skip_year, 0, 1)):max_year
plot_years <- plot_years[!(plot_years %in% skip_year)]
ebs_years <- plot_years[which(!(plot_years %in% nbs_years))]

fig_res <- 600

nbs_ebs_layers <- akgfmaps::get_base_layers(select.region = "ebs",
                                            set.crs = coldpool:::ebs_proj_crs)

for(ii in 1:length(plot_years)) {
  if(plot_years[ii] == 2018) {
    sel_bt_raster <- terra::mask(terra::rast(coldpool:::nbs_ebs_bottom_temperature),
                                 dplyr::filter(nbs_ebs_layers$survey.grid,
                                               STATIONID %in% c("V-01", "U-01", "T-01", "S-01", "R-01",
                                                                "V-02", "U-02", "T-02", "S-02", "R-02",
                                                                "DD-03", "ZZ-03", "Y-03", "X-03", "W-03", "V-03", "U-03", "T-03", "S-03", "R-03",
                                                                "DD-04", "CC-04", "BB-04", "AA-04", "ZZ-04", "Y-04", "X-04", "W-04", "V-04", "U-04", "T-04", "S-04", "R-04",
                                                                "DD-05", "CC-05", "BB-05", "AA-05", "ZZ-05", "Y-05", "X-05", "W-05", "V-05", "U-05", "T-05", "S-05", "R-05",
                                                                "DD-06", "CC-06", "BB-06", "AA-06", "ZZ-06", "Y-06", "X-06", "W-06", "V-06", "U-06", "T-06", "S-06", "R-06",
                                                                "DD-07", "CC-07", "BB-07", "AA-07", "ZZ-07", "Y-07", "X-07", "W-07", "V-07", "U-07", "T-07", "S-07", "R-07",
                                                                "DD-08", "CC-08", "BB-08", "AA-08", "ZZ-08", "Y-08", "X-08", "W-08", "V-08", "U-08", "T-08", "S-08", "R-08",
                                                                "DD-09", "CC-09", "BB-09", "AA-09", "ZZ-09", "Y-09", "X-09", "W-09", "V-09", "U-09", "T-09", "S-09", "R-09",
                                                                "DD-10", "CC-10", "BB-10", "AA-10", "ZZ-10", "Y-10", "X-10", "W-10", "V-10", "U-10", "T-10", "S-10", "R-10")),
                                 inverse = TRUE,
                                 touches = FALSE)
    sel_sst_raster <- terra::mask(terra::rast(coldpool:::nbs_ebs_surface_temperature),
                                  dplyr::filter(nbs_ebs_layers$survey.grid,
                                                STATIONID %in% c("V-01", "U-01", "T-01", "S-01", "R-01",
                                                                 "V-02", "U-02", "T-02", "S-02", "R-02",
                                                                 "DD-03", "ZZ-03", "Y-03", "X-03", "W-03", "V-03", "U-03", "T-03", "S-03", "R-03",
                                                                 "DD-04", "CC-04", "BB-04", "AA-04", "ZZ-04", "Y-04", "X-04", "W-04", "V-04", "U-04", "T-04", "S-04", "R-04",
                                                                 "DD-05", "CC-05", "BB-05", "AA-05", "ZZ-05", "Y-05", "X-05", "W-05", "V-05", "U-05", "T-05", "S-05", "R-05",
                                                                 "DD-06", "CC-06", "BB-06", "AA-06", "ZZ-06", "Y-06", "X-06", "W-06", "V-06", "U-06", "T-06", "S-06", "R-06",
                                                                 "DD-07", "CC-07", "BB-07", "AA-07", "ZZ-07", "Y-07", "X-07", "W-07", "V-07", "U-07", "T-07", "S-07", "R-07",
                                                                 "DD-08", "CC-08", "BB-08", "AA-08", "ZZ-08", "Y-08", "X-08", "W-08", "V-08", "U-08", "T-08", "S-08", "R-08",
                                                                 "DD-09", "CC-09", "BB-09", "AA-09", "ZZ-09", "Y-09", "X-09", "W-09", "V-09", "U-09", "T-09", "S-09", "R-09",
                                                                 "DD-10", "CC-10", "BB-10", "AA-10", "ZZ-10", "Y-10", "X-10", "W-10", "V-10", "U-10", "T-10", "S-10", "R-10")),
                                  inverse = TRUE,
                                  touches = FALSE)

  } else {
    sel_bt_raster <- terra::rast(coldpool:::nbs_ebs_bottom_temperature)
    sel_sst_raster <- terra::rast(coldpool:::nbs_ebs_surface_temperature)
  }

   sel_bt_layer_df <- as.data.frame(terra::rast(coldpool:::nbs_ebs_bottom_temperature)[[names(terra::rast(coldpool:::nbs_ebs_bottom_temperature)) == plot_years[ii]]], 
                                na.rm = FALSE, 
                                xy = TRUE) |>
    tidyr::pivot_longer(cols = 3) |>
    sf::st_as_sf(coords = c("x", "y"),
                 crs = coldpool:::ebs_proj_crs) |>
    dplyr::rename(year = name,
                  temperature = value)  |>
    stars::st_rasterize()

    sel_bt_layer_df$temperature <- cut(sel_bt_layer_df$temperature, 
                                  breaks = nbs_ebs_temp_breaks)

    sel_bt_layer_df <- sel_bt_layer_df |>
      sf::st_as_sf() |>
      dplyr::group_by(temperature) |>
      dplyr::summarise(n = n()) |>
      dplyr::select(-n) |>
      dplyr::ungroup() |>
      sf::st_intersection(nbs_ebs_layers$survey.area)

  sel_bt_layer_df$year <- plot_years[ii]

  sel_sst_layer_df <- as.data.frame(terra::rast(coldpool:::nbs_ebs_surface_temperature)[[names(terra::rast(coldpool:::nbs_ebs_surface_temperature)) == plot_years[ii]]],
                                na.rm = FALSE,
                                xy = TRUE) |>
    tidyr::pivot_longer(cols = 3) |>
    sf::st_as_sf(coords = c("x", "y"),
                 crs = coldpool:::ebs_proj_crs) |>
    dplyr::rename(year = name,
                  temperature = value)  |>
    stars::st_rasterize()

    sel_sst_layer_df$temperature <- cut(sel_sst_layer_df$temperature,
                                  breaks = nbs_ebs_temp_breaks)

    sel_sst_layer_df <- sel_sst_layer_df |>
      sf::st_as_sf() |>
      dplyr::group_by(temperature) |>
      dplyr::summarise(n = n()) |>
      dplyr::select(-n) |>
      dplyr::ungroup() |>
      sf::st_intersection(nbs_ebs_layers$survey.area)

  sel_sst_layer_df$year <- plot_years[ii]

  if(ii == 1) {
    bt_year_df <- sel_bt_layer_df
    sst_year_df <- sel_sst_layer_df
  } else {
    bt_year_df <- dplyr::bind_rows(bt_year_df, sel_bt_layer_df) 
    sst_year_df <- dplyr::bind_rows(sst_year_df, sel_sst_layer_df)

  }

}

# Union to combine strata 31, 32 into 30, etc.
nbs_ebs_agg_strata <- nbs_ebs_layers$survey.strata |>
  dplyr::mutate(agg_stratum = Stratum) |>
  dplyr::mutate(agg_stratum = replace(agg_stratum, agg_stratum %in% c(31,32), 30),
                agg_stratum = replace(agg_stratum, agg_stratum %in% c(41,42,43), 40),
                agg_stratum = replace(agg_stratum, agg_stratum %in% c(61,62), 60)) |> 
  dplyr::group_by(agg_stratum) |> 
  dplyr::summarise()

ebs_nbs_bt_temperature_map <- ggplot2::ggplot() +
  ggplot2::geom_sf(data = nbs_ebs_layers$akland, 
                   fill = "grey70", 
                   color = "black") +
  ggplot2::geom_sf(data = nbs_ebs_layers$survey.area, 
                   fill = "grey85", 
                   color = "black") +
  ggplot2::geom_sf(data = bt_year_df,
                   mapping = aes(fill = temperature),
                   color = NA) +
  ggplot2::geom_sf(data = nbs_ebs_layers$survey.area, 
                   fill = NA, 
                   color = "black") +
  ggplot2::facet_wrap(~year, ncol = grid_layout[1], nrow = grid_layout[2]) +
  ggplot2::geom_sf(data = nbs_ebs_agg_strata, 
                   fill = NA,
                   color = "black") +
  ggplot2::geom_sf(data = nbs_ebs_layers$graticule,
                   alpha = 0.3) +
  ggplot2::coord_sf(xlim = nbs_ebs_layers$plot.boundary$x, 
                    ylim = nbs_ebs_layers$plot.boundary$y) +
  ggplot2::scale_x_continuous(name = "Longitude", 
                              breaks = nbs_ebs_layers$lon.breaks) + 
  ggplot2::scale_y_continuous(name = "Latitude", 
                              breaks = nbs_ebs_layers$lat.breaks) +
  ggplot2::scale_fill_manual(values = viridis_pal(option = nbs_ebs_viridis_option)(length(nbs_ebs_temp_breaks)-1),
                             na.value = NA) +
  coldpool::theme_multi_map_blue_strip() +
  theme(legend.position = "none",
        plot.margin = unit(c(5,5,-5,5), units = "mm"),
        axis.title = element_blank(),
        axis.text = element_text(size = 9))

temp_map_cbar <- coldpool::legend_discrete_cbar(breaks = nbs_ebs_temp_breaks,
                                                colors = viridis::viridis_pal(option = nbs_ebs_viridis_option),
                                                legend_direction = "horizontal",
                                                font_size = 3,
                                                width = 0.1,
                                                expand_size.x = 0.3,
                                                expand_size.y = 0.3,
                                                expand.x = 0.3,
                                                expand.y = 0.9,
                                                spacing_scaling = 1.2,
                                                text.hjust = 0.5,
                                                font.family = "sans",
                                                neat.labels = FALSE) + 
  annotate("text", 
           x = 1.15, 
           y = 3.5, 
           label =  expression(bold("Bottom Temperature"~(degree*C))), 
           size = rel(3.2)) + 
  theme(plot.margin = unit(c(0,0, 0, 5), units = "mm"))

ebs_nbs_bt_map_grid <- cowplot::plot_grid(ebs_nbs_bt_temperature_map,
                                  temp_map_cbar,
                                  nrow = 2,
                                  rel_heights = c(0.85,0.15))

ragg::agg_png(filename = here::here("plots", paste0(max_year, "_nbs_ebs_temperature_map_grid.png")), width = 6, height = 6, units = "in", res = fig_res)
print(ebs_nbs_bt_map_grid)
dev.off()

ebs_nbs_sst_temperature_map <- ggplot2::ggplot() +
  ggplot2::geom_sf(data = nbs_ebs_layers$akland,
                   fill = "grey70",
                   color = "black") +
    ggplot2::geom_sf(data = nbs_ebs_layers$survey.area,
                   fill = "grey85",
                   color = "black") +
    ggplot2::geom_sf(data = sst_year_df,
                   mapping = aes(fill = temperature),
                   color = NA) +
  ggplot2::facet_wrap(~year, ncol = grid_layout[1], nrow = grid_layout[2]) +
  ggplot2::geom_sf(data = nbs_ebs_agg_strata,
                   fill = NA,
                   color = "black") +
  ggplot2::geom_sf(data = nbs_ebs_layers$graticule,
                   alpha = 0.3) +
  ggplot2::coord_sf(xlim = nbs_ebs_layers$plot.boundary$x,
                    ylim = nbs_ebs_layers$plot.boundary$y) +
  ggplot2::scale_x_continuous(name = "Longitude",
                              breaks = nbs_ebs_layers$lon.breaks) +
  ggplot2::scale_y_continuous(name = "Latitude",
                              breaks = nbs_ebs_layers$lat.breaks) +
  ggplot2::scale_fill_manual(values = viridis_pal(option = nbs_ebs_viridis_option)(length(nbs_ebs_temp_breaks)-1),
                             na.value = NA,
                             drop = FALSE) +
  coldpool::theme_multi_map_blue_strip() +
  theme(legend.position = "none",
        plot.margin = unit(c(5,5,-5,5), units = "mm"),
        axis.title = element_blank(),
        axis.text = element_text(size = 9))

sst_map_cbar <- coldpool::legend_discrete_cbar(breaks = nbs_ebs_temp_breaks,
                                                colors = viridis::viridis_pal(option = nbs_ebs_viridis_option),
                                                legend_direction = "horizontal",
                                                font_size = 3,
                                                width = 0.1,
                                                expand_size.x = 0.3,
                                                expand_size.y = 0.3,
                                                expand.x = 0.3,
                                                expand.y = 0.9,
                                                spacing_scaling = 1.2,
                                                text.hjust = 0.5,
                                                font.family = "sans",
                                                neat.labels = FALSE) +
  annotate("text",
           x = 1.15,
           y = 3.5,
           label =  expression(bold("Surface Temperature"~(degree*C))),
           size = rel(3.2)) +
  theme(plot.margin = unit(c(0,0, 0, 5), units = "mm"))

ebs_nbs_sst_map_grid <- cowplot::plot_grid(ebs_nbs_sst_temperature_map,
                                           sst_map_cbar,
                                           nrow = 2,
                                           rel_heights = c(0.85,0.15))

ragg::agg_png(filename = here::here("plots", paste0(max_year, "_nbs_ebs_sst_map_grid.png")), width = 6, height = 6, units = "in", res = fig_res)
print(ebs_nbs_sst_map_grid)
dev.off()
sebs_temperatures <- coldpool:::cold_pool_index |>
    dplyr::filter(YEAR <= max_year) |>
  dplyr::select(YEAR, MEAN_GEAR_TEMPERATURE, MEAN_SURFACE_TEMPERATURE) |>
  dplyr::rename(Bottom = MEAN_GEAR_TEMPERATURE, 
                Surface = MEAN_SURFACE_TEMPERATURE) |>
  dplyr::mutate(group = YEAR < 2020,
                region = "Eastern Bering Sea (summer BT survey)") |>
  reshape2::melt(id.vars = c("YEAR", "group", "region"))

nbs_temperatures <- coldpool:::nbs_mean_temperature |>
    dplyr::filter(YEAR <= max_year) |>
  dplyr::select(YEAR, MEAN_GEAR_TEMPERATURE, MEAN_SURFACE_TEMPERATURE) |>
  dplyr::rename(Bottom = MEAN_GEAR_TEMPERATURE, 
                Surface = MEAN_SURFACE_TEMPERATURE) |>
  dplyr::mutate(group = YEAR,
                region = "Northern Bering Sea (summer BT survey)") |>
  reshape2::melt(id.vars = c("YEAR", "group", "region"))

all_temperatures <- dplyr::bind_rows(sebs_temperatures,
                                     nbs_temperatures)

sebs_sst_mean <- mean(sebs_temperatures$value[sebs_temperatures$variable == "Surface"])
sebs_bt_mean <- mean(sebs_temperatures$value[sebs_temperatures$variable == "Bottom"])
nbs_sst_mean <- mean(nbs_temperatures$value[nbs_temperatures$variable == "Surface"])
nbs_bt_mean <- mean(nbs_temperatures$value[nbs_temperatures$variable == "Bottom"])

color_sst <- "darkgreen"
color_bt <- "darkblue"

ebs_mean_temp_df <- data.frame(region = c(rep("Eastern Bering Sea (summer BT survey)", 2),
                                          rep("Northern Bering Sea (summer BT survey)", 2)),
                               variable = rep(c("Bottom", "Surface"), 2),
                               value = c(sebs_bt_mean,
                                         sebs_sst_mean,
                                         nbs_bt_mean,
                                         nbs_sst_mean))

plot_average_temperature <- ggplot(data = all_temperatures,
                                   mapping = aes(x = YEAR,
                                                 y = value,
                                                 color = variable,
                                                 shape = variable, 
                                                 group = paste0(group, variable))) +
  geom_point(size = rel(2)) +
  geom_line() +
  geom_hline(data = ebs_mean_temp_df,
             aes(yintercept = value,
             color = variable),
             linetype = 2) +
  scale_color_manual(values = c(color_bt, color_sst),
                     drop = FALSE) +
  scale_y_continuous(name = expression(bold("Average Temperature"~(degree*C))), 
                     limits = c(0,11.2),
                     breaks = seq(0,12,2),
                     expand = c(0,0)) +
  scale_x_continuous(name = "Year",
                     breaks = seq(1980,2020,10)) +
  facet_wrap(~region, scales = "free") +
  theme_bw() +
  theme(axis.title = element_text(color = "black", face = "bold"),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        panel.border = element_rect(color = "black", fill = NA),
        panel.background = element_rect(color = "black", fill = NA),
        panel.grid = element_blank(),
        legend.title = element_blank(),
        legend.position = "bottom",
        strip.text = element_text(size = 9,
                                  color = "white",
                                  face = "bold",
                                  margin = margin(0.5, 0, 0.5, 0, "mm")),
        strip.background = element_rect(fill = "#0055a4",
                                        color = NA))

plot_sebs_average_temperature <- ggplot(data = all_temperatures |>
               dplyr::filter(region == "Eastern Bering Sea (summer BT survey)"),
                                   mapping = aes(x = YEAR,
                                                 y = value,
                                                 color = variable,
                                                 shape = variable, 
                                                 group = paste0(group, variable))) +
  geom_point(size = rel(2)) +
  geom_line() +
  geom_hline(data = ebs_mean_temp_df |>
               dplyr::filter(region == "Eastern Bering Sea (summer BT survey)"),
             aes(yintercept = value,
             color = variable),
             linetype = 2) +
  scale_color_manual(values = c(color_bt, color_sst),
                     drop = FALSE) +
  scale_y_continuous(name = expression(bold("Average Temperature"~(degree*C))), 
                     limits = c(0,11.2),
                     breaks = seq(0,12,2),
                     expand = c(0,0)) +
  scale_x_continuous(name = "Year",
                     breaks = seq(1980,2020,10)) +
  facet_wrap(~region, scales = "free") +
  theme_bw() +
  theme(axis.title = element_text(color = "black", face = "bold"),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        panel.border = element_rect(color = "black", fill = NA),
        panel.background = element_rect(color = "black", fill = NA),
        panel.grid = element_blank(),
        legend.title = element_blank(),
        legend.position = "bottom",
        strip.text = element_text(size = 9,
                                  color = "white",
                                  face = "bold",
                                  margin = margin(0.5, 0, 0.5, 0, "mm")),
        strip.background = element_rect(fill = "#0055a4",
                                        color = NA))

ragg::agg_png(file = here::here("plots", paste0(max_year, "_average_temperature.png")), width = 6, height = 3, units = "in", res = fig_res)
print(plot_average_temperature)
dev.off()

ragg::agg_png(file = here::here("plots", paste0(max_year, "_plot_sebs_average_temperature.png")), width = 6, height = 3, units = "in", res = fig_res)
print(plot_sebs_average_temperature)
dev.off()
cp_summary <- dplyr::bind_rows(
  dplyr::mutate(cold_pool_index, 
                diff = MEAN_GEAR_TEMPERATURE - mean(MEAN_GEAR_TEMPERATURE)) |> 
    dplyr::mutate(sign = sign(diff),
                  z = diff/sd(MEAN_GEAR_TEMPERATURE)) |>
    dplyr::inner_join(data.frame(sign = c(-1,1),
                                 symbol = c("-","+"),
                                 col = c(1,2))) |>
    dplyr::select(YEAR, diff, symbol, z, col) |>
    dplyr::mutate(var = "Bottom temperature"),
  dplyr::mutate(cold_pool_index, 
                diff = MEAN_SURFACE_TEMPERATURE - mean(MEAN_SURFACE_TEMPERATURE)) |> 
    dplyr::mutate(sign = sign(diff),
                  z = diff/sd(MEAN_SURFACE_TEMPERATURE)) |>
    dplyr::inner_join(data.frame(sign = c(-1,1),
                                 symbol = c("-","+"),
                                 col = c(1,2))) |>
    dplyr::select(YEAR, diff, symbol, z, col) |>
    dplyr::mutate(var = "Sea surface temperature"),
  dplyr::mutate(cold_pool_index, 
                diff = AREA_LTE2_KM2 - mean(AREA_LTE2_KM2)) |> 
    dplyr::mutate(sign = sign(diff),
                  z = diff/sd(AREA_LTE2_KM2)) |>
    dplyr::inner_join(data.frame(sign = c(-1,1),
                                 symbol = c("-","+"),
                                 col = c(2,1))) |>
    dplyr::select(YEAR, diff, symbol, z, col) |>
    dplyr::mutate(var = "Cold pool area")) |>
  dplyr::mutate(group = YEAR < 2020,
                var = factor(var, 
                             levels = c("Bottom temperature",
                                        "Sea surface temperature",
                                        "Cold pool area")))

zscore_plot <- ggplot(data = cp_summary, 
       aes(x = YEAR, 
           y = z, 
           group = group)) +
  geom_hline(yintercept = c(0), linetype = 1) +
  geom_hline(yintercept = c(-1,1), linetype = 2) +
  geom_hline(yintercept = c(-2,2), linetype = 3) +
  geom_point() +
  geom_line() +
  geom_text(data = cp_summary,
            aes(x = YEAR, y = 2.5, label = symbol, color = factor(col))) +
  facet_wrap(~var, nrow = 3) +
  scale_x_continuous(name = "Year") +
  scale_y_continuous(name = "Anomaly") +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw() +
  theme(axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        panel.border = element_rect(color = "black", fill = NA),
        panel.background = element_rect(color = "black", fill = NA),
        strip.text = element_text(size = 9,
                                  color = "white",
                                  face = "bold",
                                  margin = margin(0.5, 0, 0.5, 0, "mm")),
        strip.background = element_rect(fill = "#0055a4",
                                        color = NA),
        legend.position = "none")

ragg::agg_png(file = here::here("plots", paste0(max_year, "_anomaly.png")), width = 6, height = 6, units = "in", res = fig_res)
print(zscore_plot)
dev.off()
year_vec <- c(1982:2019, 2021:2023)

nbs_years <- c(2010, 2017, 2019, 2021:2023)

temp_breaks <- c(-Inf, seq(-1,8,1), Inf)
color_pal <- "H"
fig_res <- 300

dir.create(here::here("plots", "annual_bt"))

sebs_layers <- akgfmaps::get_base_layers(select.region = "sebs",
                                         set.crs = coldpool:::ebs_proj_crs)

nbs_layers <- akgfmaps::get_base_layers(select.region = "ebs",
                                         set.crs = coldpool:::ebs_proj_crs, use.survey.bathymetry = TRUE)

bt_raster_sebs <- terra::rast(coldpool::ebs_bottom_temperature)

bt_raster_nbs <- terra::rast(coldpool::nbs_ebs_bottom_temperature)

bt_raster_2018 <- terra::mask(bt_raster_nbs[[names(bt_raster_nbs) == 2018]],
                              dplyr::filter(nbs_layers$survey.grid,
                                            STATIONID %in% c("V-01", "U-01", "T-01", "S-01", "R-01",
                                                             "V-02", "U-02", "T-02", "S-02", "R-02",
                                                             "DD-03", "ZZ-03", "Y-03", "X-03", "W-03", "V-03", "U-03", "T-03", "S-03", "R-03",
                                                             "DD-04", "CC-04", "BB-04", "AA-04", "ZZ-04", "Y-04", "X-04", "W-04", "V-04", "U-04", "T-04", "S-04", "R-04",
                                                             "DD-05", "CC-05", "BB-05", "AA-05", "ZZ-05", "Y-05", "X-05", "W-05", "V-05", "U-05", "T-05", "S-05", "R-05",
                                                             "DD-06", "CC-06", "BB-06", "AA-06", "ZZ-06", "Y-06", "X-06", "W-06", "V-06", "U-06", "T-06", "S-06", "R-06",
                                                             "DD-07", "CC-07", "BB-07", "AA-07", "ZZ-07", "Y-07", "X-07", "W-07", "V-07", "U-07", "T-07", "S-07", "R-07",
                                                             "DD-08", "CC-08", "BB-08", "AA-08", "ZZ-08", "Y-08", "X-08", "W-08", "V-08", "U-08", "T-08", "S-08", "R-08",
                                                             "DD-09", "CC-09", "BB-09", "AA-09", "ZZ-09", "Y-09", "X-09", "W-09", "V-09", "U-09", "T-09", "S-09", "R-09",
                                                             "DD-10", "CC-10", "BB-10", "AA-10", "ZZ-10", "Y-10", "X-10", "W-10", "V-10", "U-10", "T-10", "S-10", "R-10")),
                              inverse = TRUE,
                              touches = TRUE)




for(ii in 1:length(year_vec)) {

  if(year_vec[ii] == 2018) {
     sel_raster <- bt_raster_2018
     mask_layer <- nbs_layers$survey.area
  } else {
    if(year_vec[ii] %in% nbs_years) {
      sel_raster <- bt_raster_nbs
      mask_layer <- nbs_layers$survey.area
    } else {
      sel_raster <- bt_raster_sebs
      mask_layer <- sebs_layers$survey.area
    }

  }

  bt_df <- as.data.frame(sel_raster[[names(sel_raster) == year_vec[ii]]],
                         xy = TRUE,
                         na.rm = FALSE) |>
    tidyr::pivot_longer(cols = 3) |>
    sf::st_as_sf(coords = c("x", "y"),
                 crs = coldpool:::ebs_proj_crs) |>
    dplyr::rename(year = name,
                  temperature = value)  |>
    stars::st_rasterize()

  bt_df$temperature <- cut(bt_df$temperature,
                           breaks = temp_breaks)

  bt_df <- bt_df |>
    sf::st_as_sf() |>
    dplyr::group_by(temperature) |>
    dplyr::summarise(n = n()) |>
    dplyr::select(-n) |>
    dplyr::ungroup() |>
    sf::st_intersection(mask_layer)

  bt_df$year <- year_vec[ii]

  if(ii == 1) {
    bt_year_df <- bt_df
  } else {
    bt_year_df <- dplyr::bind_rows(bt_year_df, bt_df) 
  }

}

temp_map_cbar <- coldpool::legend_discrete_cbar(breaks = temp_breaks,
                                                colors = viridis::viridis_pal(option = color_pal)(length(temp_breaks)-1),
                                                legend_direction = "horizontal",
                                                font_size = 3,
                                                width = 0.1,
                                                expand_size.x = 0.3,
                                                expand_size.y = 0.3,
                                                expand.x = 0.3,
                                                expand.y = 0.9,
                                                spacing_scaling = 1,
                                                text.hjust = 0.5,
                                                font.family = "sans",
                                                neat.labels = FALSE) + 
  annotate("text", 
           x = 1.15, 
           y = 3.5, 
           label =  expression(bold("Bottom Temperature"~(degree*C))), 
           size = rel(3.2)) + 
  theme(plot.margin = unit(c(0,0, 0, 5), units = "mm"))

for(ii in 1:length(year_vec)) {

    sel_year <- dplyr::filter(bt_year_df, year == year_vec[ii])

  temp_map <- ggplot() +
      ggplot2::geom_sf(data = nbs_layers$akland, 
                       fill = "grey70", 
                       color = "black") +
      ggplot2::geom_sf(data = sel_year,
                       mapping = aes(fill = temperature),
                       color = NA) +
      ggplot2::geom_sf(data = nbs_layers$bathymetry) +
      ggplot2::geom_sf(data = nbs_layers$survey.area, 
                      fill = NA, 
                      color = "black") +
      ggplot2::geom_sf(data = nbs_layers$graticule,
                       alpha = 0.3) +
      ggplot2::coord_sf(xlim = nbs_layers$plot.boundary$x, 
                        ylim = nbs_layers$plot.boundary$y) +
      ggplot2::scale_x_continuous(name = "Longitude", 
                                  breaks = nbs_layers$lon.breaks) + 
      ggplot2::scale_y_continuous(name = "Latitude", 
                                  breaks = nbs_layers$lat.breaks) +
      facet_wrap(~year, ncol = 4) +
      ggplot2::scale_fill_manual(values = viridis_pal(option = color_pal)(length(temp_breaks)-1),
                                 na.value = NA,
                                 drop = FALSE) +
      coldpool::theme_multi_map_blue_strip() +
      theme(legend.position = "none",
            plot.margin = unit(c(5,5,-5,5), units = "mm"),
            axis.title = element_blank(),
            axis.text = element_text(size = 9))

  temp_map_grid <- cowplot::plot_grid(temp_map,
                       temp_map_cbar,
                       nrow = 2,
                       rel_heights = c(0.8,0.2))

  ragg::agg_png(filename = here::here("plots", "annual_bt", paste0(year_vec[ii], "_ebs_bt_map.png")), 
      width = 6, height = 6, units = "in", res = fig_res)
  print(temp_map_grid)
  dev.off()


}

Contributed by Sean Rohan^1^ and Lewis Barnett^1^
^1^ Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA
Contact: sean.rohan@noaa.gov Last updated: September 2023

```rFigure 1. Area of the cold pool in the eastern Bering Sea (EBS) shelf bottom trawl survey area, as measured using observations from the EBS bottom trawl survey (including northwest strata 82 and 90) from 1982–2022. Dashed line denotes the grand mean of the time series and dotted lines show ±1 standard deviation.", message=FALSE, warning=FALSE, echo=FALSE} print(plot_cpi_timeseries)

Summer SST and Bottom Temperatures
Contributed by Sean Rohan, sean.rohan@noaa.gov, and Lewis Barnett, lewis.barnett@noaa.gov
Mean surface and bottom temperatures are calculated from spatially interpolated data collected during AFSC summer bottom trawl surveys of the EBS shelf (1982-2023, except 2020) and NBS (2010, 20172019, 20212023). Temperature data are not adjusted for effects of seasonal heating. Temperature data are interpolated using ordinary kriging with Stein's parameterization of the Matern semivariogram model (Rohan et al., 2022). Code, figures, and data products presented in this contribution are provided in the coldpool R package [https://github.com/afsc-gap-products/coldpool](https://github.com/afsc-gap-products/coldpool).

In the EBS, the mean surface temperature (6.34&deg;C) was near the time series average (6.75&deg;C) and 1.12&deg;C colder than in 2022. The 2023 mean bottom temperature in the EBS (2.28&deg;C) was near the time series mean of 2.49&deg;C and 0.28&deg;C colder than the mean bottom temperature in 2022 (Figure 24). The near-average bottom temperatures in 2022 and 2023 are a departure from extremely warm conditions in 2016-2021 that had four of the five warmest years in the times series. In the NBS, the mean surface temperature (8.05oC) was slightly below the time series average (9.18oC) and the mean bottom temperature (3.92oC) was near the time series average (3.94oC). However, the time series for the NBS is extremely short compared to the EBS.

In 2023, bottom temperatures $\leq$ -1&deg;C were observed south of St. Matthew Island for the first time since 2015 (Figure 25). The average bottom temperature in the inner domain of the EBS survey area (2.17&deg;C) was the coldest observed since 2013 (1.64&deg;C). The coldest bottom temperatures ($\leq$ -1&deg;C) within the combined EBS shelf and NBS survey areas were in the middle shelf (between 50 and 100 m isobaths), extending from south of St. Matthew Island at ~61.5&deg;N to the U.S.-Russia maritime boundary. This area of cold water was considerably larger than in 2019 and 2021, when bottom temperatures $\leq$ 0&deg;C were confined to a small area along the U.S.-Russia Convention Line.

The warmest bottom temperatures were along the coast of the Alaska mainland between Nunivak Island and Norton Sound. However, the area north of Nunivak Island at 60.5&deg;N is sampled at the end of the survey and reflects seasonal warming since sampling occurs 35-45 days later than in the area directly south.


Cold Pool Extent - AFSC Bottom Trawl Survey
Contributed by Sean Rohan, sean.rohan@noaa gov, and Lewis Barnett, lewis.barnett@noaa gov
The cold pool extent is calculated from spatially interpolated bottom temperature data collected during AFSC summer bottom trawl surveys of the EBS shelf (1982-2023, except 2020). See 'Summer SST and Bottom Temperatures' contribution above for more details.

The spatial footprint of the cold pool in 2023 was similar to the most recent near-average years in 2011, 2017, and 2022 (Figure 33). North of 57.5&deg;N, the cold pool covered nearly the entire middle domain of the survey area between the 50m and 100m isobaths. The extents of the $\leq$ -1&deg;C (26,550 km^2^) and $\leq$ 0&deg;C (62,400 km^2^) isotherms were larger than they have been since the 2015 survey. The extent of the $\leq$ 1&deg;C isotherm (110,875 km^2^) was the largest its been since 2013. The extents of the $\leq$ -1&deg;C, $\leq$ 0&deg;C, and $\leq$ 1&deg;C isotherms were all larger than their time series averages of 23,579 km^2^, 54,158 km^2^, and 102,906 km^2^, respectively.


```rFigure 2. Cold pool extent in the eastern Bering Sea (EBS), as measured using observations from the EBS bottom trawl survey. Upper panels: Maps of cold pool extent in the EBS shelf survey area from 20022021. Lower panel: Extent of the cold pool in proportion to the total EBS shelf survey area from 19822022. Fill colors denote bottom temperatures $\\leq$ 2&deg;C, $\\leq$ 1&deg;C, $\\leq$ 0&deg;C, and $\\leq$ -1&deg;C.", fig.height=8, fig.width=6, message=FALSE, warning=FALSE, echo=FALSE}
print(coldpool_with_area)

```rFigure 3. Average summer surface (green triangles) and bottom (blue circles) temperatures (°C) on the eastern Bering Sea (EBS) shelf based on data collected during standardized summer bottom trawl surveys from 1982–2022. Dashed lines represent the time series mean.", message=FALSE, warning=FALSE, echo=FALSE} print(plot_sebs_average_temperature)

```rFigure 4. Contour maps of bottom temperatures from the 2018, 2019, 2021, and 2022 eastern Bering Sea shelf and northern Bering Sea bottom trawl surveys.", message=FALSE, warning=FALSE, echo=FALSE}
print(ebs_nbs_bt_map_grid)


afsc-gap-products/coldpool documentation built on Sept. 14, 2024, 7:40 p.m.