knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) library(knitr) hook_output <- knit_hooks$get("output") knit_hooks$set(output = function(x, options) { lines <- options$output.lines if (is.null(lines)) { return(hook_output(x, options)) # pass to default hook } x <- unlist(strsplit(x, "\n")) more <- "..." if (length(lines)==1) { # first n lines if (length(x) > lines) { # truncate the output, but add .... x <- c(head(x, lines), more) } } else { x <- c(more, x[lines], more) } # paste these lines together x <- paste(c(x, ""), collapse = "\n") hook_output(x, options) })
The goal of NINA is the the analysis and implementation of biotic interactions into environmental niche models using kernel density estimations.
You can install NINA from github repository with:
devtools::install_github("agarciaEE/NINA")
This is a basic example which shows you how to use NINA's functions:
library(NINA)
Estimate Environmental Niche Models:
First group of species
g1_EN = EN_model(env_data, occ_data1, cluster = "env", n.clus = 5)
2nd group of species
g2_EN = EN_model(env_data, occ_data2, cluster = g1_EN$clus)
Correct EN models by biotic interactions:
g2_BC <- BC_model(g2_EN, g1_EN, A.matrix = int_matrix, type = "region")
Transform environmental niche space into ecological niche space (prioritizing the effect of biotic interactions).
g2_EC <- EC_model(g2_BC, type = "region")
You can summarize the output by using summary
function or print
:
summary(g1_EN) print(g2_BC)
You can also plot a summary of the output model using plot
function:
plot(g2_BC)
Models can be evaluated using models_evaluation
function and visualize it by plotting the output.
eval <- models_evaluation(g2_BC) plot(eval)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.