#' Fitted emdiObject
#'
#' An object of class emdi that represents point predictions of regional
#' disaggregated indicators. Optionally it also contains corresponding MSE
#' estimates. Depending on the estimation the object is also of class direct
#' or model. For each provided model-based approach an additional class is assigned:
#' the standard Fay-Herriot approach ("fh"), and the empirical best prediction
#' ("ebp"). Objects of these classes have methods for the generic functions
#' \code{\link{compare_plot}}, \code{\link{estimators}}, \code{\link{print}},
#' \code{\link{plot}} (only for class model), and \code{\link{summary}}.
#'
#' @return
#' The following components are always included in an emdi object but not
#' always filled and with different components depending on the estimation
#' approach:
#' \item{\code{call}}{a list containing an image of the function call that
#' produced the object.}
#' \item{\code{fixed}}{For details, see \code{fixed} in \code{\link{fh}} and
#' \code{\link{ebp}}). Not filled for class direct.}
#' \item{\code{framework}}{a list with components that describe the data
#' setup, e.g., number of domains in the sample.}
#' \item{\code{ind}}{data frame containing estimates for indicators per domain.}
#' \item{\code{method}}{character returning the method for the estimation of
#' the optimal lambda (for class ebp), here "reml", or a list returning method for
#' the estimation of the variance of the random effect and the applied MSE
#' estimation (for class fh). Not filled for class direct.}
#' \item{\code{model}}{list containing a selection of model components.
#' Not filled for class direct.}
#' \item{\code{MSE}}{data frame containing MSE estimates corresponding to the
#' point predictions in \code{ind} per indicator per domain if MSE is selected
#' in function call. If \code{FALSE}, \code{MSE} is \code{NULL}.}
#' \item{\code{transformation}}{character or list containing information about applied
#' transformation and, if appropriate, backtransformation. Not filled for class direct.}
#' \item{\code{transform_param}}{a list with two elements, \code{optimal_lambda}
#' and \code{shift_par}, where the first contains the optimal parameter for a
#' Box-Cox transformation or NULL for no and log transformation and the
#' second the potential shift parameter in the log or Box-Cox transformation
#' and NULL for no transformation. Not filled for class fh and direct.}
#' \item{\code{successful_bootstraps}}{a matrix with domains as rows and indicators
#' as columns. The cells contain the number of successful bootstraps for each
#' combination. Not filled for class model.}
#' @references
#' Alfons, A. and Templ, M. (2013). Estimation of Social Exclusion Indicators
#' from Complex Surveys: The \R Package \pkg{laeken}. Journal of
#' Statistical Software, 54(15), 1-25. \cr \cr
#' Fay R.E., Herriot R.A. (1979) Estimates of income for small places: An
#' application of James–Stein procedures to census data. Journal of the American
#' Statistical Association, Vol. 74, 269–277. \cr \cr
#' Molina, I. and Rao, J.N.K. (2010). Small area estimation of poverty
#' indicators. The Canadian Journal of Statistics, Vol. 38, No.3, 369-385.
#' @seealso \code{\link{direct}}, \code{\link{ebp}}, \code{ \link[nlme]{lme}},
#' \code{ \link[nlme]{lmeObject}}
#'
#' @name emdiObject
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.