###################################################
## Functions for count data sample size calculations
##
## Author: Alex Godwood
##
## Date: 16 Dec 2010
##
####################################################
## Poisson sample size
poisson.ss <- function(alpha, power, control, od, perc.drop){
## od = overdispersion
## control = control mean
## perc.drop = % reduction to detect
theCall <- match.call()
print(thecall)
exper <- control*(100-perc.drop)/100
n1 <- (od*(control+exper)*(qnorm(power)+qnorm(1-alpha/2))^2)/(control-exper)^2
res <- data.frame(alpha, power, control, od, perc.drop, control, experimental=exper, n1)
return(res)
}
#poisson.ss(alpha=0.05, power=0.9, control=1.5, od=1.3, perc.drop=20)
## Negative binomial sample size
neg.binom.ss <- function(alpha, power, control, k, perc.drop){
## k = dispersion parameter
## control = control mean
## perc.drop = % reduction to detect
theCall <- match.call()
print(theCall)
exper <- control*(100-perc.drop)/100
n1 <- (((qnorm(power)+qnorm(1-alpha/2))^2)/(log(control/exper))^2)*(((control+exper)/(control*exper))+2*k)
res <- data.frame(alpha, power, control, k, perc.drop, control, experimental=exper, overdispersion=k, n1=n1)
return(res)
}
#neg.binom.ss(alpha=0.05, power=0.9, control=1.5, k=1.3, perc.drop=20)
#neg.binom.ss(alpha=0.05, power=0.9, control=1, k=0.56, perc.drop=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.