fit_dynamic_inactivation | R Documentation |
Fits the parameters of an inactivation model to experimental data.
The function modFit
of the package FME
is
used for the adjustment.
fit_dynamic_inactivation( experiment_data, simulation_model, temp_profile, starting_points, upper_bounds, lower_bounds, known_params, ..., minimize_log = TRUE, tol0 = 1e-05 )
experiment_data |
data frame with the experimental data to be adjusted. It must have a column named “time” and another one named “N”. |
simulation_model |
character identifying the model to be used. |
temp_profile |
data frame with discrete values of the temperature for
each time. It must have one column named |
starting_points |
starting values of the parameters for the adjustment. |
upper_bounds |
named numerical vector defining the upper bounds of the parameters for the adjustment. |
lower_bounds |
named numerical vector defining the lower bounds of the parameters for the adjustment. |
known_params |
named numerical vector with the fixed (i.e., not adjustable) model parameters. |
... |
further arguments passed to |
minimize_log |
logical. If |
tol0 |
numeric. Observations at time 0 make Weibull-based models singular. The time for observatins taken at time 0 are changed for this value. |
A list of class FitInactivation
with the following items:
fit_results: a list of class modFit
with the info
of the adjustment.
best_prediction: a list of class SimulInactivation
with prediction made by the adjusted model.
data: a data frame with the data used for the fitting.
modFit
## EXAMPLE 1 ------ data(dynamic_inactivation) # The example data set is used. get_model_data() # Retrieve the valid model keys. simulation_model <- "Peleg" # Peleg's model will be used model_data <- get_model_data(simulation_model) model_data$parameters # Set the model parameters dummy_temp <- data.frame(time = c(0, 1.25, 2.25, 4.6), temperature = c(70, 105, 105, 70)) # Dummy temp. profile ## Set known parameters and initial points/bounds for unknown ones known_params = c(temp_crit = 100) starting_points <- c(n = 1, k_b = 0.25, N0 = 1e+05) upper_bounds <- c(n = 2, k_b = 1, N0 = Inf) lower_bounds <- c(n = 0, k_b = 0, N0 = 1e4) dynamic_fit <- fit_dynamic_inactivation(dynamic_inactivation, simulation_model, dummy_temp, starting_points, upper_bounds, lower_bounds, known_params) plot(dynamic_fit) goodness_of_fit(dynamic_fit) ## END EXAMPLE 1 -----
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.