#' Retrieve archived DISPATCHPRICE data
#'
#' This function returns one month of DISPATCHPRICE data from AEMO's NEMWeb as specified by the datestring argument
#'
#' DISPATCHPRICE data contains historical 5-minute generation quantities for all scheduled and non-scheduled generators in the NEM.
#'
#' Archive data is available from July 2009 to approximately two weeks ago. In order to retrieve newer data you will need to use the nemwebR_current_DISPATCHPRICE function.
#'
#'
#' @param datestring integer of the form YYYYMM
#'
#' @return A data frame
#' @export
#'
#' @examples
#' nemwebR_archive_dispatchprice(202101)
#'
nemwebR_archive_dispatchprice <- function(datestring) {
temp <- tempfile()
utils::download.file(url = stringr::str_c(
"https://nemweb.com.au/Data_Archive/Wholesale_Electricity/MMSDM/",
stringr::str_sub(datestring, start = 1, end = 4),
"/MMSDM_",
stringr::str_sub(datestring, start = 1, end = 4),
"_",
stringr::str_sub(datestring, start = 5, end = 6),
"/MMSDM_Historical_Data_SQLLoader/DATA/",
"PUBLIC_DVD_DISPATCHPRICE_",
datestring,
"010000.zip"),
destfile = temp, mode = "wb", quiet = TRUE)
data_file <- utils::read.csv(utils::unzip(temp), header = FALSE)
## Dump the files from the hard drive
unlink(temp)
unlink(stringr::str_c(
"PUBLIC_DVD_DISPATCHPRICE_",
datestring,
"010000.csv")
)
colnames(data_file) <- data_file[2, ]
data_file <- data_file[-c(1:2), -c(1:4)]
data_file <- utils::head(data_file, -1)
data_file$SETTLEMENTDATE <- as.POSIXct(data_file$SETTLEMENTDATE,
tz = "Australia/Brisbane",
format = "%Y/%m/%d %H:%M:%S")
data_file$LASTCHANGED <- as.POSIXct(data_file$LASTCHANGED,
tz = "Australia/Brisbane",
format = "%Y/%m/%d %H:%M:%S")
#! There was a change in the file specification from November 2009 onwards
# The very old files only have 36 columns
# All newer files have additional 18 pre-AP and cumulative price columns [37:54]
## Correct the column data types based on explicitly named date or character type columns
data_file <- data_file %>%
dplyr::mutate(dplyr::across(.cols = !c(SETTLEMENTDATE, REGIONID, LASTCHANGED, PRICE_STATUS),
.fns = as.numeric)) # check this works
# Old implementation:
#data_file <- data_file %>% dplyr::mutate(dplyr::across(.cols = c(2, 4:10, 12:35, 37:54), .fns = as.numeric))
## Add in missing columns to preserve joining with newer datasets (where were they stored previously?)
if(ncol(data_file) == 36) {
missing_columns <- data.frame(
PRE_AP_ENERGY_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_RAISE6_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_RAISE60_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_RAISE5MIN_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_RAISEREG_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_LOWER6_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_LOWER60_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_LOWER5MIN_PRICE = as.numeric(rep(NA, nrow(data_file))),
PRE_AP_LOWERREG_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_ENERGY_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_RAISE6_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_RAISE60_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_RAISE5MIN_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_RAISEREG_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_LOWER6_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_LOWER60_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_LOWER5MIN_PRICE = as.numeric(rep(NA, nrow(data_file))),
CUMUL_PRE_AP_LOWERREG_PRICE = as.numeric(rep(NA, nrow(data_file)))
)
data_file <- dplyr::bind_cols(data_file, missing_columns)
}
## Correct the intervention naming (could introduce unwanted grouping?)
data_file <- data_file %>% dplyr::group_by(REGIONID, SETTLEMENTDATE) %>%
dplyr::slice(which.min(INTERVENTION)) %>% dplyr::ungroup()
return(data_file)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.