mice.impute.bygroup: Groupwise Imputation Function

Description Usage Arguments Value Examples

View source: R/mice.impute.bygroup.R

Description

The function mice.impute.bygroup performs groupwise imputation for arbitrary imputation methods defined in mice.

Usage

1
mice.impute.bygroup(y, ry, x, group, imputationFunction, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

group

Name of grouping variable

imputationFunction

Imputation method for mice

...

More arguments to be passed to imputation function

Value

Vector of imputed values

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
## Not run: 
#############################################################################
# EXAMPLE 1: Cluster-specific imputation for some variables
#############################################################################

data( data.ma01 )
dat <- data.ma01
# use sub-dataset
dat <- dat[ dat$idschool <=1006, ]
V <- ncol(dat)
# create initial predictor matrix and imputation methods
predictorMatrix <- matrix( 1, nrow=V, ncol=V)
diag(predictorMatrix) <- 0
rownames(predictorMatrix) <- colnames(predictorMatrix) <- colnames(dat)
predictorMatrix[, c("idstud", "studwgt","urban" ) ] <- 0
method <- rep("norm", V)
names(method) <- colnames(dat)

#** groupwise imputation of variable books
method["books"] <- "bygroup"
# specify name of the grouping variable ('idschool') and imputation method ('norm')
group <- list( "books"="idschool" )
imputationFunction <- list("books"="norm" )

#** conduct multiple imputation in mice
imp <- mice::mice( dat, method=method, predictorMatrix=predictorMatrix,
            m=1, maxit=1, group=group, imputationFunction=imputationFunction )

## End(Not run)

alexanderrobitzsch/miceadds documentation built on June 20, 2018, 7:46 a.m.