# cdf.StudentsT: Evaluate the cumulative distribution function of a StudentsT... In alexpghayes/distributions: Probability Distributions as S3 Objects

## Description

Evaluate the cumulative distribution function of a StudentsT distribution

## Usage

 ```1 2``` ```## S3 method for class 'StudentsT' cdf(d, x, ...) ```

## Arguments

 `d` A `StudentsT` object created by a call to `StudentsT()`. `x` A vector of elements whose cumulative probabilities you would like to determine given the distribution `d`. `...` Unused. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.

## Value

A vector of probabilities, one for each element of `x`.

Other StudentsT distribution: `pdf.StudentsT()`, `quantile.StudentsT()`, `random.StudentsT()`
 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56``` ```set.seed(27) X <- StudentsT(3) X random(X, 10) pdf(X, 2) log_pdf(X, 2) cdf(X, 4) quantile(X, 0.7) ### example: calculating p-values for two-sided T-test # here the null hypothesis is H_0: mu = 3 # data to test x <- c(3, 7, 11, 0, 7, 0, 4, 5, 6, 2) nx <- length(x) # calculate the T-statistic t_stat <- (mean(x) - 3) / (sd(x) / sqrt(nx)) t_stat # null distribution of statistic depends on sample size! T <- StudentsT(df = nx - 1) # calculate the two-sided p-value 1 - cdf(T, abs(t_stat)) + cdf(T, -abs(t_stat)) # exactly equivalent to the above 2 * cdf(T, -abs(t_stat)) # p-value for one-sided test # H_0: mu <= 3 vs H_A: mu > 3 1 - cdf(T, t_stat) # p-value for one-sided test # H_0: mu >= 3 vs H_A: mu < 3 cdf(T, t_stat) ### example: calculating a 88 percent T CI for a mean # lower-bound mean(x) - quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx) # upper-bound mean(x) + quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx) # equivalent to mean(x) + c(-1, 1) * quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx) # also equivalent to mean(x) + quantile(T, 0.12 / 2) * sd(x) / sqrt(nx) mean(x) + quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx) ```