### 1. Daily weather and elevation
> * Creating vectors or a data.frame with latitude, longitude, environment identification and collection time intervals (beginning and end) facilitates the sampling of multiple environments.
```{r, eval=FALSE}
env.i = c("1_AN","1_PI","2_AN","2_PI") # environment ID
lat = c(-22.875,-22.705,-22.875,-22.705) # latitude coordinates
lon = c(-47.997,-47.637,-47.997,-47.637) # longitude coordinates
plant.date = c("2016-01-26","2016-01-21","2017-01-12","2017-01-10") # year-month-day
harv.date = c('2016-08-01',"2016-07-14","2017-07-25","2017-07-15")
wzxhzdk:1
> * Lets consider tropical maize, with cardinals Tbase1 = 8,Tbase2 = 45,Topt1 = 30,Topt2 = 37
```{r, eval=FALSE}
# Processing Raw-weather data
df.clim = processWTH(env.data = df.clim,Tbase1 = 8,Tbase2 = 45,Topt1 = 30,Topt2 = 37)
head(df.clim) # novel processed df.clim set
wzxhzdk:2
> * Finally, you can combine the weather and soil data into a single data.frame
```{r, eval=FALSE}
require(reshape2)
(soil_data = dcast(soil_data,env~Feature,value.var = 'Soil_Grid'))
df.clim = merge(df.clim,soil_data,by='env')
wzxhzdk:3
# Environmental Covariables (ECs)
> * the function W_matrix allow the creation of panels of environmental covariables and a matrix of ECs for predictive breeding (**W**):
```{r, eval=FALSE}
(var.i = names(df.clim)[c(2,10:16,21:31)])
EC = W_matrix(env.data = df.clim,env.id = 'env',var.id = var.i,statistic = 'mean')
plot_panel(EC,title = 'Panel of Environmental Covariables')
wzxhzdk:4