#' Penguin body mass predictor
#'
#' This function predicts the penguins body mass based on physical trait inputs.
#'
#' @param k Numeric input representing the number of folds.
#'
#' @keywords prediction
#'
#' @return Numeric output representing the cv error.
#'
#' @examples
#' my_rf_cv(5)
#'
#' @export
my_rf_cv <- function(k) {
folds <- sample(rep(1:k, length = nrow(data_cleaned)))
for(i in 1:30) {
for (i in 1:k) {
data_training <- data_cleaned %>% filter(folds != i)
data_testing <- data_cleaned %>% filter(folds == i)
modele <- randomForest(body_mass_g ~ bill_length_mm + bill_depth_mm +
flipper_length_mm, data = data_training, ntree = 100)
predic <- predict(modele, data_testing[, -1])
MSE <- (predic - data_cleaned$body_mass_g[i])^2
}
}
avg_MSE <- sum(MSE) / k
return(avg_MSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.