#'@title Summary function for \code{idie_exposed}
#'@description Summary function for \code{idie_exposed} a targeted minimum-loss based estimator for the Interventional
#'Disparity Indirect Effect (IDIE) among the exposed.
#'@name summary.idie_exposed
#'@rdname summary.idie_exposed
#'@method summary idie_exposed
#'@author Amalie Lykkemark Moller \email{amalielykkemark@@live.dk}
#'@export
summary.idie_exposed <- function(x,...) {
if(identical(class(x), "idie_exposed")){
cat("\nRisk difference (IDIE among the exposed)")
cat("\n Parameter estimate: ", signif(x$estimate$psi,5))
cat("\n Estimated variance: ", signif(x$se$se.diff,5))
cat("\n 95% confidence interval:",paste("(", signif(x$estimate$psi-1.96*x$se$se.diff,5),", ", signif(x$estimate$psi+1.96*x$se$se.diff,5), ")", sep=""),"\n")
cat('\n')
cat("\nRisk among the exposed under stochastic intervention")
cat("\n Parameter estimate: ", signif(x$estimate$psi0,5))
cat("\n Estimated variance: ", signif(x$se$se0,5))
cat("\n 95% confidence interval:",paste("(", signif(x$estimate$psi0-1.96*x$se$se0,5),", ", signif(x$estimate$psi0+1.96*x$se$se0,5), ")", sep=""),"\n")
cat("\n Distribution of chance of the mediator under intervention among the exposed:\n")
print(round(x$distributions['distribution.Z.a0',],4))
cat('\n')
cat("\nRisk among the exposed without intervention")
cat("\n Parameter estimate: ", signif(x$estimate$psi1,5))
cat("\n Estimated variance: ", signif(x$se$se1,5))
cat("\n 95% confidence interval:",paste("(", signif(x$estimate$psi1-1.96*x$se$se1,5),", ", signif(x$estimate$psi1+1.96*x$se$se1,5), ")", sep=""),"\n")
cat("\n Distribution of chance of the mediator without intervention among the exposed:\n")
print(round(x$distributions['distribution.Z.a1',],4))
cat('\n')
if (!is.null(x$superlearner.discrete)){
cat("\nDiscrete super learner")
cat("\n Algorithm chosen for modelling the exposure: ", x$superlearner.discrete$A.exposure)
cat("\n Algorithm chosen for modelling the intermediate: ", x$superlearner.discrete$Z.intermediate)
cat("\n Algorithm chosen for modelling the outcome:", x$superlearner.discrete$Y.outcome,"\n")
}
if (!is.null(x$superlearner.weight)){
cat("\nSuper learner weights")
cat("\n Weights for algorithms for the exposure model:\n")
print(x$superlearner.weight$A.exposure)
cat("\n Weights for algorithms for the intermediate model:\n")
print(x$superlearner.weight$Z.intermediate)
cat("\n Weights for algorithms for the outcome model:\n")
print(x$superlearner.weight$Y.outcome)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.