##
## These "global" variables are used in subset() or dplyr commands and are
## mistakenly classified as global variables by R CMD Check. Therefore they
## are added here as "global" variables to avoid the NOTE.
utils::globalVariables(c("est", "gamma_t_equiv", "label", "lhs",
"manifest_thetacovariates", "op"))
#' lsttheory
#'
#' Compute several models of latent state-trait theory..
#' _PACKAGE
#' Dataset d_taucong.
#'
#' A simulated dataset. The variables are:
#'
#' \itemize{
#' \item y1.
#' \item y2.
#' \item y3.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 300 rows and 3 variables
#' @name d_taucong
NULL
#' Dataset d_multitraitmultistate02.
#'
#' A simulated dataset. The variables are:
#'
#' \itemize{
#' \item y11.
#' \item y21.
#' \item y12.
#' \item y22.
#' \item y13.
#' \item y23.
#' \item y14.
#' \item y24.
#' \item x.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 1000 rows and 9 variables
#' @name d_multitraitmultistate02
NULL
#' Dataset d_multitraitmultistate.
#'
#' A simulated dataset. The variables are:
#'
#' \itemize{
#' \item y11.
#' \item y21.
#' \item y12.
#' \item y22.
#' \item y13.
#' \item y23.
#' \item y14.
#' \item y24.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 1000 rows and 8 variables
#' @name d_multitraitmultistate
NULL
#' Dataset d_multistate02.
#'
#' A simulated dataset. The variables are:
#'
#' \itemize{
#' \item y11.
#' \item y21.
#' \item y31.
#' \item y12.
#' \item y22.
#' \item y32.
#' \item y13.
#' \item y23.
#' \item y33.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 1000 rows and 9 variables
#' @name d_multistate02
NULL
#' Dataset d_multistate.
#'
#' A simulated dataset. The variables are:
#'
#' \itemize{
#' \item y11.
#' \item y21.
#' \item y12.
#' \item y22.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 400 rows and 4 variables
#' @name d_multistate
NULL
#' Dataset mmLSTrf_RealDataExample
#'
#' This dataset is a subsample from a larger longitudinal study assessing the
#' Big Five personality traits in both offline (real-world) and online (digital)
#' contexts. Data were collected using the self- and other-rating versions of
#' the Big Five Inventory-2 (BFI-2; Soto and John, 2017b) at two measurement
#' occasions, with an average interval of 11 days.
#'
#' From this broader study, six self-rated items measuring the dimension of
#' Negative Emotionality (N) were selected. These chosen items correspond to
#' those of the short version of the BFI-2 (BFI-2-S; Soto and John, 2017a) and
#' are rated on a five-point Likert scale. Three of the items are true-keyed,
#' and three are false-keyed.
#'
#' The six items are listed below; the false-keyed are marked with “*”.
#'
#' \itemize{
#' \item NAt. Worries a lot.
#' \item NDt. Tends to feel depressed, blue.
#' \item NVt. Is temperamental, gets emotional easily.
#' \item NAf. Is relaxed, handles stress well*.
#' \item NDf. Feels secure, comfortable with self*.
#' \item NVf. Is emotionally stable, not easily upset*.
#' }
#'
#' Each item exists in four versions in the dataset, resulting in a total
#' of 24 variables. Items assessing Negative Emotionality in the offline
#' context are labeled with the prefixes “Of1_” (measurement occasion
#' one) and “Of2_” (measurement occasion two), while those in the online
#' context are labeled “On1_” and “On2_” respectively.
#'
#' The resulting dataset reflects a study design with two fixed situations
#' (offline and online), two measurement occasions, two measurement methods
#' (true- and false-keyed), and three indicators per method (true-keyed:
#' NVt, NAt, NDt; false-keyed: NVf, NAf, NDf).
#'
#' Note: The dataset contains missing values.
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 425 rows and 24 variables
#' @name mmLSTrf_RealDataExample
NULL
#' Dataset mmLSTrf_SimulatedDataExample.
#'
#' A simulated dataset illustrating data for a study design with two fixed
#' situations, three measurement occasions, two methods and three indicators.
#'
#' The variables are named according to the following format: \eqn{Y_{imts}}
#' (i = indicator, m = method, t = occasion, s = fixed situation)
#' \itemize{
#' \item \eqn{Y_{1111}}
#' \item \eqn{Y_{2111}}
#' \item \eqn{Y_{3111}}
#' \item \eqn{Y_{1211}}
#' \item \eqn{Y_{2211}}
#' \item ...
#' \item \eqn{Y_{2132}}
#' \item \eqn{Y_{3132}}
#' \item \eqn{Y_{1132}}
#' \item \eqn{Y_{2232}}
#' \item \eqn{Y_{3232}}
#' }
#'
#' This format reflects the order of indicator variables in a path diagram, where
#' indicators are first grouped by fixed situations, within those they are then
#' grouped by occasions and within those they are lastly grouped by methods.
#' The resulting nested structure has indicators nested within methods, nested
#' within occasions, nested within fixed situations.
#'
#' The specified population values underlying the simulated data are:
#' \itemize{
#' \item \eqn{E(T_{111})} = 2.75
#' \item \eqn{Comm(T_{112})} = 0.44
#' \item \eqn{E(T_{112})} = 3.25
#' \item \eqn{\epsilon_{imts}} = 0.15
#' \item \eqn{Var(T_{111})} = 0.40
#' \item \eqn{\alpha_{ims}} = 0.00
#' \item \eqn{Var(T_{112})} = 0.45
#' \item \eqn{\lambda_{ims}} = 1.00
#' \item \eqn{Var(O_{11t1})} = 0.20
#' \item \eqn{\delta_{ims}} = 1.00
#' \item \eqn{Var(O_{11t2})} = 0.30
#' \item \eqn{\gamma_{ims}} = 1.00
#' \item \eqn{Var(TM_{ims})} = 0.10
#' \item \eqn{\beta_{1112}}* = 0.35
#' \item \eqn{Var(OM_{mts})} = 0.10
#' \item \eqn{\beta_{0112}} = 1.31
#' \item \eqn{Var(\omega_{11s})} = 0.25
#' }
#' *\eqn{\beta_{1112}} represents the standardized beta coefficient.
#' Trait factors are essentially parallel, other latent variables are essentially
#' equivalent. Scalar measurement invariance holds across fixed situations and
#' methods. Latent variables are orthogonal apart from trait factors.
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 500 rows and 36 variables
#' @name mmLSTrf_SimulatedDataExample
NULL
#' Dataset happy
#'
#' Restructured wide-format data from Weiss et al. (2021), containing the items
#' happiness ("How happy do you feel at the moment") and
#' life satisfaction ("How satisfied are you with your life at the moment?") on five-point Likert scales.
#' Data was assessed 5 times a day on 5 days during an experience-sampling study.
#' The original dataset is available online at: https://osf.io/kwp6n/
#' The variables are:
#'
#' \itemize{
#' \item happy_1. Self-reported happiness on occasion 1.
#' \item satisfaction_1. Self-reported life satisfaction on occasion 1.
#' \item happy_2. Self-reported happiness on occasion 2.
#' \item satisfaction_2. Self-reported life satisfaction on occasion 2.
#' \item ...
#' \item happy_25. Self-reported happiness on occasion 25.
#' \item satisfaction_25. Self-reported life satisfaction on occasion 25.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 425 rows and 50 variables
#' @name happy
NULL
#' Dataset happybig5
#'
#' Restructured wide-format data from Weiss et al. (2021), containing the items
#' happiness ("How happy do you feel at the moment") and
#' life satisfaction ("How satisfied are you with your life at the moment?") on five-point Likert scales.
#' Data was assessed 5 times a day on 5 days during an experience-sampling study.
#' Additionally, this dataset contains measures of the Big Five personality dimensions from an intake session before the experience sampling phase.
#' The Big Five personality dimensions reflect mean values of 2 items each, one of which reverse coded (Gosling et al., 2003; Muck et al., 2007)
#' This dataset can be used to demonstrate how covariates (Big Five) contribute to trait components of Latent State-Trait models.
#' The original dataset (including codebooks) is available online at: https://osf.io/kwp6n/
#' The variables are:
#'
#' \itemize{
#' \item happy_1. Self-reported happiness on occasion 1.
#' \item satisfaction_1. Self-reported life satisfaction on occasion 1.
#' \item happy_2. Self-reported happiness on occasion 2.
#' \item satisfaction_2. Self-reported life satisfaction on occasion 2.
#' \item ...
#' \item happy_25. Self-reported happiness on occasion 25.
#' \item satisfaction_25. Self-reported life satisfaction on occasion 25.
#' \item Big5_OE_M. Openness.
#' \item Big5_CO_M. Conscientiousness.
#' \item Big5_EX_M. Extraversion.
#' \item Big5_AG_M. Agreeableness.
#' \item Big5_ES_M. Emotional Stability.
#' }
#'
#' @docType data
#' @keywords datasets
#' @format A data frame with 425 rows and 55 variables
#' @name happybig5
NULL
############## namespace ###########
#' @importFrom utils head tail
NULL
#' @importFrom magrittr %>%
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.