#' Plot the predictor matrix of an imputation model
#'
#' @param data A predictor matrix for `mice`, typically generated with [mice::make.predictorMatrix] or [mice::quickpred].
#' @param vrb String, vector, or unquoted expression with variable name(s), default is "all".
#' @param method Character string or vector with imputation methods.
#' @param label Logical indicating whether predictor matrix values should be displayed.
#' @param square Logical indicating whether the plot tiles should be squares.
#' @param rotate Logical indicating whether the variable name labels should be rotated 90 degrees.
#'
#' @return An object of class `ggplot2::ggplot`.
#'
#' @examples
#' # generate a predictor matrix
#' pred <- mice::quickpred(mice::nhanes)
#'
#' # plot predictor matrix for all columns
#' plot_pred(pred)
#'
#' # plot predictor matrix for specific columns by supplying a character vector
#' plot_pred(pred, c("chl", "hyp"))
#'
#' # plot predictor matrix for specific columns by supplying unquoted variable names
#' plot_pred(pred, c(chl, hyp))
#'
#' # plot predictor matrix for specific columns by passing an object with variable names
#' # from the environment, unquoted with `!!`
#' my_variables <- c("chl", "hyp")
#' plot_pred(pred, !!my_variables)
#' # object with variable names must be unquoted with `!!`
#' try(plot_pred(pred, my_variables))
#'
#' @export
plot_pred <-
function(data,
vrb = "all",
method = NULL,
label = TRUE,
square = TRUE,
rotate = FALSE) {
verify_data(data, pred = TRUE)
vrb <- rlang::enexpr(vrb)
vrb_matched <- match_vrb(vrb, row.names(data))
p <- length(vrb_matched)
if (!is.null(method) && is.character(method)) {
if (length(method) == 1) {
method <- rep(method, p)
}
if (length(method) == p) {
ylabel <- "Imputation method"
}
}
if (is.null(method)) {
method <- rep("", p)
ylabel <- ""
}
if (!is.character(method) || length(method) != p) {
cli::cli_abort("Method should be NULL or a character string or vector (of length 1 or `ncol(data)`).")
}
long <- data.frame(
vrb = 1:p,
prd = rep(vrb_matched, each = p),
ind = matrix(data[vrb_matched, vrb_matched], nrow = p * p, byrow = TRUE)
) %>% dplyr::mutate(clr = factor(
.data$ind,
levels = c(-3, -2, 0, 1, 2),
labels = c(
"inclusion-restriction variable",
"cluster variable",
"not used",
"predictor",
"random effect"
),
ordered = TRUE
))
gg <-
ggplot2::ggplot(long,
ggplot2::aes(
x = .data$prd,
y = .data$vrb,
label = .data$ind,
fill = .data$clr
)) +
ggplot2::geom_tile(color = "black", alpha = 0.6) +
ggplot2::scale_x_discrete(limits = vrb_matched, position = "top") +
ggplot2::scale_y_reverse(
breaks = 1:p,
labels = vrb_matched,
sec.axis = ggplot2::dup_axis(labels = method, name = ylabel)
) +
ggplot2::scale_fill_manual(
values = c(
"inclusion-restriction variable" = "orangered",
"cluster variable" = "lightyellow",
"not used" = "grey90",
"predictor" = "palegreen3",
"random effect" = "deepskyblue"
)
) +
ggplot2::labs(
x = "Imputation model predictor",
y = "Variable to impute",
fill = "",
color = ""
) +
theme_minimice()
if (all(method == "")) {
gg <-
gg + ggplot2::theme(axis.ticks.y.right = ggplot2::element_blank())
}
if (label) {
gg <- gg + ggplot2::geom_text(color = "black", show.legend = FALSE)
}
if (square) {
gg <- gg + ggplot2::coord_fixed(expand = FALSE)
} else {
gg <- gg + ggplot2::coord_cartesian(expand = FALSE)
}
if (rotate) {
gg <-
gg + ggplot2::theme(axis.text.x.top = ggplot2::element_text(angle = 90))
}
return(gg)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.