BsProb1: Posterior Probabilities from Bayesian Screening Experiments

Description Usage Arguments Value References Examples

Description

Marginal factor posterior probabilities and model posterior probabilities from designed screening experiments are calculated according to Box and Meyer's Bayesian procedure.

Usage

1
BsProb1(X, y, p = 0.25, gamma = 2, max_int = 3, max_fac = ncol(X), top = 10)

Arguments

X

Matrix. The design matrix.

y

Vector. The response vector.

p

Numeric. Prior probability assigned to active factors.

gamma

Numeric. Variance inflation associated to active factors.

max_int

Integer <= 3. Maximum order of interactions considered in the models.

max_fac

Integer. Maximum number of factors included in the models.

top

Integer. Number of models to keep with the highest posterior probability.

Value

A list with all the input and output parameters.

X

Matrix. The design matrix.

y

Vector. The response vector.

n

Integer. Number of runs.

col

Integer. Number of columns in the design matrix.

max_int

Integer <= 3. Maximum order of interactions considered in the models.

max_fac

Integer. Maximum number of factors included in the models.

pi

Numeric. Prior probability assigned to active factors.

gamma

Numeric. Variance inflation associated with active factors.

top

Integer. Number of models to keep with the highest posterior probability.

Prob_fac

Data frame. Posterior probability for each factor.

Prob_mod

Data frame. Posterior probability for each of the top models.

nfac_mod

Vector. Number of active factors in each of the top models.

p_mod

Vector. Posterior probability for each of the top models.

fac_mod

Matrix. Active factors for each of the top models.

References

Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". Technometrics. Vol. 28. No. 1. pp. 11–18.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94–105.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#Example 1
library(BsMD2)
data("BM93e1")
X <- as.matrix(BM93e1[,2:6])
y <- BM93e1[,7]
drillAdvance.BsProb1 <- BsMD2::BsProb1(X, y, .25, 1.6, 3, 5)
plot(drillAdvance.BsProb1)
summary(drillAdvance.BsProb1)

#Example 2
data("BM93e2")
X <- as.matrix(BM93e2[,1:7])
y <- BM93e2[,8]
pp <- BsMD2::BsProb1(X, y, .25, 1.5, 3, 7)
plot(pp)
summary(pp)

#Example 3
data("BM93e3")
X16 <- as.matrix(BM93e3[1:16,2:9])
y16 <- BM93e3[1:16,10]
pp16 <- BsMD2::BsProb1(X16, y16, .25, 2, 3, 8)

X <- as.matrix(BM93e3[,1:9])
y <- BM93e3[,10]
pp <- BsProb1(X, y, .25, 2, 3, 4)

ana-vela7/BsMD2 documentation built on Dec. 19, 2021, 2:32 a.m.