Description Usage Arguments Value References Examples
Best follow-up experiments based on the MD criterion are suggested to discriminate between competing models.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MDopt(
X,
y,
Xcand,
nMod,
p_mod,
fac_mod,
nFDes = 4,
max_int = 3,
g = 2,
Iter = 20,
nStart = 10,
top = 10
)
|
X |
Matrix. Design matrix of the initial experiment. |
y |
Vector. Response vector of the initial experiment. |
Xcand |
Matrix. Candidate runs to be chosen for the follow-up design. |
nMod |
Integer. Number of competing models. |
p_mod |
Vector. Posterior probabilities of the competing models. |
fac_mod |
Matrix. Active factors in the competing models. |
nFDes |
Integer. Number of runs to consider in the follow-up experiment. |
max_int |
Integer. Maximum order of interactions in the models. |
g |
Numeric. Variance inflation factor for active effects. |
Iter |
Integer. Maximum number of iterations for each search. |
nStart |
Integer. Number of random starting designs. |
top |
Integer. Highest MD follow-up designs recorded. |
A list with all the input and output parameters.
X |
Matrix. The design matrix. |
y |
Vector. The response vector. |
Xcand |
Matrix. Candidate runs to be chosen for the follow-up design. |
Runs |
Integer. Number of runs. |
Fac |
Integer. Number of factors. |
nMod |
Integer. Number of competing models. |
p_mod |
Vector. Posterior probabilities of the competing models. |
fac_mod |
Matrix. Active factors in the competing models. |
nFDes |
Integer. Number of runs to consider in the follow-up experiment. |
max_int |
Integer. Maximum order of the interactions in the models. |
g |
Numeric. Variance inflation factor for active effects. |
Iter |
Integer. Maximum number of iterations for each search. |
nStart |
Integer. Number of random starting designs. |
top |
Integer. Highest MD follow-up designs recorded. |
MD |
Data frame. Designs points and MD for top designs. |
MDtop |
Vector. MD for top designs. |
DEStop |
Data frame. Top design points. |
Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996). "Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)". Technometrics, Vol. 38, No. 4, pp. 303-332.
Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94–105.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #Example 1
library(BsMD2)
data(BM93e3)
X <- as.matrix(BM93e3[1:16,c(1,2,4,6,9)]) #matriz de diseño inicial
y <- as.vector(BM93e3[1:16,10]) #vector de respuesta
p_mod <- c(0.2356,0.2356,0.2356,0.2356,0.0566) #probabilidad posterior de los 5 modelos
fac_mod <- matrix(c(2,1,1,1,1,3,3,2,2,2,4,4,3,4,3,0,0,0,0,4),nrow=5,
dimnames=list(1:5,c("f1","f2","f3","f4")))
Xcand <- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,
-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1),
nrow=16,dimnames=list(1:16,c("blk","f1","f2","f3","f4"))
)
injectionMolding <- MDopt(X = X, y = y, Xcand = Xcand, nMod = 5, p_mod = p_mod, fac_mod = fac_mod,
nStart = 25)
#Example 2
data(M96e2,package="BsMD2")
X <- as.matrix(cbind(blk = rep(-1,8), M96e2[c(25,2,19,12,13,22,7,32), 1:5]))
y <- M96e2[c(25,2,19,12,13,22,7,32), 6]
pp <- BsProb1(X = X[,2:6], y = y, p = .25, gamma = .4, max_int = 3, max_fac = 5, top = 32)
p <- pp@p_mod
facs <- pp@fac_mod
Xcand <- as.matrix(cbind(blk = rep(+1,32), M96e2[,1:5]))
#e2 <- MDopt(X = X, y = y, Xcand = Xcand, nMod = 32, p_mod = p, fac_mod = facs, g = .4,
#Iter = 10, nStart = 25, top = 5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.