Description Usage Arguments Value See Also
Control variables in control.inla for use in inla
1 2 | inla.set.control.inla.default(...)
control.inla(adapt.hessian.max.trials, adapt.hessian.mode, adapt.hessian.scale, adjust.weights, cmin, correct, correct.factor, correct.strategy, correct.verbose, cpo.diff, cutoff, diagonal, diff.logdens, dz, fast, force.diagonal, global.node.degree, global.node.factor, h, huge, int.strategy, interpolator, lincomb.derived.correlation.matrix, lincomb.derived.only, linear.correction, mode.known, npoints, numint.abserr, numint.maxfeval, numint.relerr, optimiser, print.joint.hyper, reordering, restart, skip.configurations, stencil, step.factor, step.len, strategy, stupid.search, stupid.search.factor, stupid.search.max.iter, tolerance, tolerance.f, tolerance.g, tolerance.x, verbose)
|
... |
Possible arguments |
strategy |
The strategy to use for the approximations; one of 'gaussian', 'simplified.laplace' (default) or 'laplace' |
int.strategy |
The integration strategy to use; one of 'ccd' (default), 'grid' or 'eb' (empirical bayes) |
interpolator |
The interpolator used to compute the marginals for the hyperparameters. One of 'auto', 'nearest', 'quadratic', 'weighted.distance', 'ccd', 'ccdintegrate', 'gridsum', 'gaussian'. Default is 'auto'. |
fast |
Fast mode? If on, then replace conditional modes in the Laplace approximation with conditional expectation (default TRUE) |
linear.correction |
Default TRUE for the 'strategy = laplace' option. |
h |
The step-length for the gradient calculations for the hyperparameters. Default 0.01. |
dz |
The step-length in the standarised scale for the integration of the hyperparameters. Default 1.0. |
diff.logdens |
The difference of the log.density for the hyperpameters to stop numerical integration using int.strategy='grid'. Default 2.5. |
print.joint.hyper |
If TRUE, the store also the joint distribution of the hyperparameters (without any costs). Default TRUE. |
force.diagonal |
A boolean variable, if TRUE, then force the Hessian to be diagonal. (Default FALSE.) |
skip.configurations |
A boolean variable; skip configurations if the values at the main axis are to small. (Default TRUE.) |
mode.known |
A boolean variable: If TRUE then no optimisation is done. (Default FALSE.) |
adjust.weights |
A boolean variable; If TRUE then just more accurate integration weights. (Default TRUE.) |
tolerance |
The tolerance for the optimisation of the hyperparameters. If set, this is the default value for for 'tolerance.f^(2/3)', 'tolerance.g' and 'tolerance.x'; see below. |
tolerance.f |
The tolerance for the absolute change in the log posterior in the optimisation of the hyperparameters. |
tolerance.g |
The tolerance for the absolute change in the gradient of the log posterior in the optimisation of the hyperparameters. |
tolerance.x |
The tolerance for the change in the hyperparameters (root-mean-square) in the optimisation of the hyperparameters. |
restart |
To improve the optimisation, the optimiser is restarted at the found optimum 'restart' number of times. |
optimiser |
The optimiser to use; one of 'gsl', 'domin' or 'default'. |
verbose |
A boolean variable; run in verbose mode? (Default FALSE) |
reordering |
Type of reordering to use. (EXPERT OPTION; one of "AUTO", "DEFAULT", "IDENTITY", "REVERSEIDENTITY", "BAND", "METIS", "GENMMD", "AMD", "MD", "MMD", "AMDBAR", "AMDC", "AMDBARC", or the output from |
cpo.diff |
Threshold to define when the cpo-calculations are inaccurate. (EXPERT OPTION.) |
npoints |
Number of points to use in the 'stratey=laplace' approximation |
cutoff |
The cutoff used in the 'stratey=laplace' approximation. (Smaller value is more accurate and more slow.) |
adapt.hessian.mode |
A boolean variable; should optimisation be continued if the Hessian estimate is void? (Default TRUE) |
adapt.hessian.max.trials |
Number of steps in the adaptive Hessian optimisation |
adapt.hessian.scale |
The scaling of the 'h' after each trial. |
huge |
A boolean variable; if TRUE then try to do some of the internal parallisations differently. Hopefully this will be of benefite for 'HUGE' models. (Default FALSE.) [THIS OPTION IS OBSOLETE AND NOT USED!] |
step.len |
The step-length used to compute numerical derivaties of the log-likelihood |
stencil |
Number of points in the stencil used to compute the numerical derivaties of the log-likelihood (3, 5 or 7). |
lincomb.derived.only |
A boolean variable: if TRUE the only compute the marginals for the derived linear combinations and if FALSE, the and also the linear combinations to the graph (Default TRUE) |
lincomb.derived.correlation.matrix |
A boolean variable: if TRUE compute also the correlations for the derived linear combinations, if FALSE do not (Default FALSE) |
diagonal |
Expert use only! Add a this value on the diagonal of the joint precision matrix. |
numint.maxfeval |
Maximum number of function evaluations in the the numerical integration for the hyperparameters. (Default 10000.) |
numint.relerr |
Relative error requirement in the the numerical integration for the hyperparameters. (Default 1e-5) |
numint.abserr |
Absolute error requirement in the the numerical integration for the hyperparameters. (Default 1e-6) |
cmin |
The minimum value for the negative Hessian from the likelihood. Increasing this value will stabalise the optimisation. (Default 0.0) |
step.factor |
The step factor in the Newton-Raphson algorithm saying how large step to take (Default 1.0) |
global.node.factor |
The factor which defines the degree required (how many neighbors), as a fraction of n-1, that is required to be classified as a global node and numbered last (whatever the reordering routine says). Here, n, is the size of the graph. (Disabled if larger than 1.) |
global.node.degree |
The degree required (number of neighbors) to be classified as a global node and numbered last (whatever the reordering routine says). |
stupid.search |
Enable or disable the stupid-search-algorithm, if the Hessian calculations reveals that the mode is not found. (Default |
stupid.search.max.iter |
Maximum number of iterations allowed for the stupid-search-algorithm. |
stupid.search.factor |
Factor (>=1) to increase the step-length with after each new interation. |
correct |
Add correction for the Laplace approximation. |
correct.factor |
Factor used in adjusting the correction factor (default=10) if correct=TRUE |
correct.strategy |
The strategy used to compute the correction; one of 'simplified.laplace' (default) or 'laplace' |
correct.verbose |
Be verbose when computing the correction? |
The function control.inla is used to TAB-complete arguments and returns a list of given arguments.
The function inla.set.control.inla.default returns a list with all the default values of all parameters within this control statement.
control.update, control.lincomb, control.group, control.mix, control.link, control.expert, control.compute, control.family, control.fixed, control.inla, control.predictor, control.results, control.mode, control.hazard,
inla
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.