Description Usage Arguments Value See Also
Control variables in control.inla
for use in inla
1 2 | inla.set.control.inla.default(...)
control.inla(adapt.hessian.max.trials, adapt.hessian.mode, adapt.hessian.scale, adjust.weights, cmin, correct, correct.factor, correct.strategy, correct.verbose, cpo.diff, cutoff, diagonal, diff.logdens, dz, fast, force.diagonal, global.node.degree, global.node.factor, h, huge, int.strategy, interpolator, lincomb.derived.correlation.matrix, lincomb.derived.only, linear.correction, mode.known, npoints, numint.abserr, numint.maxfeval, numint.relerr, optimiser, print.joint.hyper, reordering, restart, skip.configurations, stencil, step.factor, step.len, strategy, stupid.search, stupid.search.factor, stupid.search.max.iter, tolerance, tolerance.f, tolerance.g, tolerance.x, verbose)
|
... |
Possible arguments |
strategy |
The strategy to use for the approximations; one of 'gaussian', 'simplified.laplace' (default) or 'laplace' |
int.strategy |
The integration strategy to use; one of 'ccd' (default), 'grid' or 'eb' (empirical bayes) |
interpolator |
The interpolator used to compute the marginals for the hyperparameters. One of 'auto', 'nearest', 'quadratic', 'weighted.distance', 'ccd', 'ccdintegrate', 'gridsum', 'gaussian'. Default is 'auto'. |
fast |
Fast mode? If on, then replace conditional modes in the Laplace approximation with conditional expectation (default TRUE) |
linear.correction |
Default TRUE for the 'strategy = laplace' option. |
h |
The step-length for the gradient calculations for the hyperparameters. Default 0.01. |
dz |
The step-length in the standarised scale for the integration of the hyperparameters. Default 1.0. |
diff.logdens |
The difference of the log.density for the hyperpameters to stop numerical integration using int.strategy='grid'. Default 2.5. |
print.joint.hyper |
If TRUE, the store also the joint distribution of the hyperparameters (without any costs). Default TRUE. |
force.diagonal |
A boolean variable, if TRUE, then force the Hessian to be diagonal. (Default FALSE.) |
skip.configurations |
A boolean variable; skip configurations if the values at the main axis are to small. (Default TRUE.) |
mode.known |
A boolean variable: If TRUE then no optimisation is done. (Default FALSE.) |
adjust.weights |
A boolean variable; If TRUE then just more accurate integration weights. (Default TRUE.) |
tolerance |
The tolerance for the optimisation of the hyperparameters. If set, this is the default value for for 'tolerance.f^(2/3)', 'tolerance.g' and 'tolerance.x'; see below. |
tolerance.f |
The tolerance for the absolute change in the log posterior in the optimisation of the hyperparameters. |
tolerance.g |
The tolerance for the absolute change in the gradient of the log posterior in the optimisation of the hyperparameters. |
tolerance.x |
The tolerance for the change in the hyperparameters (root-mean-square) in the optimisation of the hyperparameters. |
restart |
To improve the optimisation, the optimiser is restarted at the found optimum 'restart' number of times. |
optimiser |
The optimiser to use; one of 'gsl', 'domin' or 'default'. |
verbose |
A boolean variable; run in verbose mode? (Default FALSE) |
reordering |
Type of reordering to use. (EXPERT OPTION; one of "AUTO", "DEFAULT", "IDENTITY", "REVERSEIDENTITY", "BAND", "METIS", "GENMMD", "AMD", "MD", "MMD", "AMDBAR", "AMDC", "AMDBARC", or the output from |
cpo.diff |
Threshold to define when the cpo-calculations are inaccurate. (EXPERT OPTION.) |
npoints |
Number of points to use in the 'stratey=laplace' approximation |
cutoff |
The cutoff used in the 'stratey=laplace' approximation. (Smaller value is more accurate and more slow.) |
adapt.hessian.mode |
A boolean variable; should optimisation be continued if the Hessian estimate is void? (Default TRUE) |
adapt.hessian.max.trials |
Number of steps in the adaptive Hessian optimisation |
adapt.hessian.scale |
The scaling of the 'h' after each trial. |
huge |
A boolean variable; if TRUE then try to do some of the internal parallisations differently. Hopefully this will be of benefite for 'HUGE' models. (Default FALSE.) [THIS OPTION IS OBSOLETE AND NOT USED!] |
step.len |
The step-length used to compute numerical derivaties of the log-likelihood |
stencil |
Number of points in the stencil used to compute the numerical derivaties of the log-likelihood (3, 5 or 7). |
lincomb.derived.only |
A boolean variable: if TRUE the only compute the marginals for the derived linear combinations and if FALSE, the and also the linear combinations to the graph (Default TRUE) |
lincomb.derived.correlation.matrix |
A boolean variable: if TRUE compute also the correlations for the derived linear combinations, if FALSE do not (Default FALSE) |
diagonal |
Expert use only! Add a this value on the diagonal of the joint precision matrix. |
numint.maxfeval |
Maximum number of function evaluations in the the numerical integration for the hyperparameters. (Default 10000.) |
numint.relerr |
Relative error requirement in the the numerical integration for the hyperparameters. (Default 1e-5) |
numint.abserr |
Absolute error requirement in the the numerical integration for the hyperparameters. (Default 1e-6) |
cmin |
The minimum value for the negative Hessian from the likelihood. Increasing this value will stabalise the optimisation. (Default 0.0) |
step.factor |
The step factor in the Newton-Raphson algorithm saying how large step to take (Default 1.0) |
global.node.factor |
The factor which defines the degree required (how many neighbors), as a fraction of n-1, that is required to be classified as a global node and numbered last (whatever the reordering routine says). Here, n, is the size of the graph. (Disabled if larger than 1.) |
global.node.degree |
The degree required (number of neighbors) to be classified as a global node and numbered last (whatever the reordering routine says). |
stupid.search |
Enable or disable the stupid-search-algorithm, if the Hessian calculations reveals that the mode is not found. (Default |
stupid.search.max.iter |
Maximum number of iterations allowed for the stupid-search-algorithm. |
stupid.search.factor |
Factor (>=1) to increase the step-length with after each new interation. |
correct |
Add correction for the Laplace approximation. |
correct.factor |
Factor used in adjusting the correction factor (default=10) if correct=TRUE |
correct.strategy |
The strategy used to compute the correction; one of 'simplified.laplace' (default) or 'laplace' |
correct.verbose |
Be verbose when computing the correction? |
The function control.inla
is used to TAB-complete arguments and returns a list of given arguments.
The function inla.set.control.inla.default
returns a list with all the default values of all parameters within this control statement.
control.update
, control.lincomb
, control.group
, control.mix
, control.link
, control.expert
, control.compute
, control.family
, control.fixed
, control.inla
, control.predictor
, control.results
, control.mode
, control.hazard
,
inla
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.