Description Usage Arguments Author(s) See Also Examples
Calculate basis functions on a 1d or 2d inla.mesh
1 2 3 4 5 6 7 8 9 | inla.mesh.basis(mesh,
type="b.spline",
n=3,
degree=2,
knot.placement="uniform.area",
rot.inv=TRUE,
boundary="free",
free.clamped=TRUE,
...)
|
mesh |
An |
type |
|
n |
For B-splines, the number of basis functions in each direction (for
1d meshes |
degree |
Degree of B-spline polynomials.
See |
knot.placement |
For B-splines on the sphere, controls the latitudinal placements of
knots. |
rot.inv |
For spherical harmonics on a sphere, |
boundary |
Boundary specification, default is free boundaries.
See |
free.clamped |
If |
... |
Finn Lindgren finn.lindgren@gmail.com
1 2 3 4 5 6 7 8 9 10 11 | n = 100
loc = matrix(runif(n*2), n, 2)
mesh = inla.mesh.2d(loc, max.edge=0.05)
basis = inla.mesh.basis(mesh, n=c(4,5))
proj = inla.mesh.projector(mesh)
image(proj$x, proj$y, inla.mesh.project(proj, basis[,7]))
if (require(rgl)) {
plot(mesh, rgl=TRUE, col=basis[,7], draw.edges=FALSE, draw.vertices=FALSE)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.