## ---- sequential ----
require(keras)
# Sequential model with several different layers
model <- keras_model_sequential() %>%
layer_dense(10, input_shape = c(64, 64)) %>%
layer_conv_1d(filters = 16, kernel_size = 8) %>%
layer_max_pooling_1d() %>%
layer_flatten() %>%
layer_dense(25) %>%
layer_dense(25, activation = "relu") %>%
layer_dropout(0.25) %>%
layer_dense(2, activation = "sigmoid")
model
model %>% plot_model()
## ---- network ----
# Model with several inputs and several outputs
# Example from https://keras.rstudio.com/articles/functional_api.html
model <- local({
main_input <- layer_input(shape = c(100), dtype = 'int32', name = 'main_input')
lstm_out <- main_input %>%
layer_embedding(input_dim = 10000, output_dim = 512, input_length = 100) %>%
layer_lstm(units = 32)
auxiliary_output <- lstm_out %>%
layer_dense(units = 1, activation = 'sigmoid', name = 'aux_output')
auxiliary_input <- layer_input(shape = c(5), name = 'aux_input')
main_output <- layer_concatenate(c(lstm_out, auxiliary_input)) %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 1, activation = 'sigmoid', name = 'main_output')
keras_model(
inputs = c(main_input, auxiliary_input),
outputs = c(main_output, auxiliary_output)
)
})
model
model %>% plot_model()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.