knitr::opts_chunk$set(echo = TRUE)

Note: The 2020 State of the Ecosystem report uses V0.1.0. The following example is incompatible with future package releases

This worked example will result in plots of the following for a specified EPU:

The commercial landings data are confidential and are not bundled with this package. This example assumes you have access the the appropriate data base and have already pulled the data and stored it in a dataframe called comland. See package comlandr for details.

Initial values for the following are needed:

The data are intially filtered by epu and the landings are aggregated by YEAR for each species (NESPP3 code). A grid is then create for all species in all years

``` {r filterD, eval=F} library(magrittr) threshold <- "0.80" transferEff <- .15 epu <- "GOM"

filter landings for designated EPU

landings <- comland %>% dplyr::filter(EPU == epu) %>% # US and NAFO landings dplyr::group_by(YEAR,NESPP3) %>% dplyr::summarise(totLand = sum(SPPLIVMT)) %>% dplyr::arrange(YEAR,NESPP3)

landings$totLand <- landings$totLand * 1000000 # convert to grams

list of unique species codes

nespp3s <- unique(comland$NESPP3)

expand grid (all species by all years) to include Zeros

completeGrid <- expand.grid(YEAR=min(comland$YEAR):max(comland$YEAR),NESPP3=nespp3s,stringsAsFactors = F) landingsTable <- dplyr::as_tibble(dplyr::left_join(completeGrid,landings,by=c("YEAR","NESPP3")))

The scientific names for each species are obtained by cross referencing cfdbs and svdbs. Then rfishbase is accessed to pull the Trophic level data for each species

```r
# get species itis, scientific name etc
lookup <- dbutils::create_species_lookup(channel,species=nespp3s)
lookupTable <- lookup$data

# Select distinct species for fishbase ------------------------------------
fishbaseTable <- lookupTable %>% dplyr::select(COMMON_NAME,SCIENTIFIC_NAME,NESPP3) %>%
  dplyr::distinct()
# access fishbase for Trophic level data
callfishbase <- eofindices::get_trophic_level(fishbaseTable)
fishbaseTable <- callfishbase$fishbaseTable

The indices are then calculated over the time range dictated by the landings data.

yrs <- min(comland$YEAR):max(comland$YEAR)

# Calculate the indices ---------------------------------------------------
# preallocate
PPR <- data.frame()
MTL <- data.frame()

for (iy in yrs) { #loop

  # filter out categories 
  annualLandings <- landings %>% dplyr::filter(YEAR == iy, !(NESPP3 %in% c("526","529","817","832","806"))) # OTHER FISH, ROCKWEED, SEAWEED, 806 = sea cucumbers
  if ((dim(annualLandings)[1]) == 0) {next}
  # pick species that make up top x % of landings
  topSpecies <- eofindices::select_top_x_percent(annualLandings$NESPP3,annualLandings$totLand,threshold)
  nSpeciesTop <- dim(topSpecies)[1]
  names(nSpeciesTop) <- "nSpecies"
  topTable <- dplyr::left_join(topSpecies,fishbaseTable,by=c("NESPP3"))

  # set TL values for missing species. User defined function
  topTable <- set_missingTL(topTable)

  # filter the landings by year and species in top x% and aggregate
  landingsTimeSeries <- landingsTable %>% dplyr::filter(NESPP3 %in% unique(topTable$NESPP3),YEAR == iy)
  # total landings for this set of species
  landingsTop <- landingsTimeSeries %>% dplyr::summarise(landings=sum(totLand))

  # Calculate the PPR & MTL indices------------------------------------------
  ### NOTE: We do not have discards in calculation, just landings
  ppr_index <- eofindices::calc_ppr_index(landingsTimeSeries,topTable,transferEff)
  mtl_index <- eofindices::calc_mtl_index(landingsTimeSeries,topTable)  
  # concatenate  
  PPR <- rbind(PPR,c(ppr_index,nSpeciesTop,landingsTop))  
  MTL <- rbind(MTL,c(mtl_index,nSpeciesTop,landingsTop))
} 

Primary production info is obtained and the PPR index is scaled by the annual PP to create an index representing proportion of PPR. The indices are shortened to the time frame represented by the PP data

PP <- eofindices::get_annual_PP(yrs,epu)
scaled <- eofindices::calc_PPR_scaled(PPR,PP)

MTL <- MTL %>% dplyr::filter(YEAR %in% scaled$YEAR)

The indices are then plotted

eofindices::plot_pp_index(scaled,epu)
eofindices::plot_ppr_index(scaled,epu)
eofindices::plot_mtl_index(MTL,epu)
knitr::include_graphics("figures/2020/PPR-GOM-0_80.png")
knitr::include_graphics("figures/2020/MTL-GOM-0_80.png")
knitr::include_graphics("figures/2020/PP-GOM.png")

Species composition over time

This will also require a connection to internal oracle databases. A connection object should be created and passed as the variable channel

## filter landings for designated EPU
landings <- comland %>% dplyr::filter(EPU == epu)  %>% # US and NAFO landings
  dplyr::group_by(YEAR,NESPP3) %>%
  dplyr::summarise(totLand = sum(SPPLIVMT)) %>% 
  dplyr::arrange(YEAR,NESPP3)

  speciesComp <- eofindices::explore_species_composition(channel,landings,as.numeric(threshold),catchCN="totLand")
  # hard code missing species names
  ind <- speciesComp$data$NESPP3 == "524"
  speciesComp$data$COMMON_NAME[ind] <- "OTHER GROUNDFISH"
  ind <- speciesComp$data$NESPP3 == "807"
  speciesComp$data$COMMON_NAME[ind] <- "SQUID,UNC"

  # aggregate all landings by YEAR  
  yearAgg <- speciesComp$data %>% dplyr::group_by(YEAR) %>% dplyr::summarize(totLand=sum(LANDINGS,na.rm = T))

}

# Plot species composition
plot(speciesComp$plotObj)
knitr::include_graphics("figures/2020/composition-GOM-0_80.png")


andybeet/indexPPR documentation built on March 18, 2021, 12:33 p.m.