run_sim1_univariate: A Function to fit univariate ABM for simulation 1

Description Usage Arguments Value

View source: R/run_sim1_univariate.R

Description

A Function to fit univariate ABM for simulation 1

Usage

1
2
run_sim1_univariate(num_mcmc, num_particles, data, m_mu, sigmasq_m, nu,
  sigmasq0, nu_eps, sigmasq0_eps, mu_theta_mean, var_theta)

Arguments

num_mcmc

The number of MCMC iterations

num_particles

The number of particles to use in particle filter

data

Time_points x 2 matrix of observed locations

m_mu

Prior values for step size mean: # mu ~ N(m_mu, sigmasq_m)

sigmasq_m

Prior values for step size mean: # mu ~ N(m_mu, sigmasq_m)

nu

Prior values for step size standard deviation: sigmasq_u ~ IG(nu/2,sigmasq0 * nu / 2)

sigmasq0

Prior values for step size standard deviation: sigmasq_u ~ IG(nu/2,sigmasq0 * nu / 2)

nu_eps

Prior values for observation error: # sigmasq_eps ~ IG(nu_eps/2,nu_eps * sigmasq0_eps / 2)

sigmasq0_eps

Prior values for observation error: # sigmasq_eps ~ IG(nu_eps/2,nu_eps * sigmasq0_eps / 2)

mu_theta_mean

Prior values for projected normal: mu_theta ~ N(mu_theta_mean, var_theta)

var_theta

Prior values for projected normal: mu_theta ~ N(mu_theta_mean, var_theta)

Value

A list containing the path and the log probability of the path


andyhoegh/moveR documentation built on Feb. 8, 2020, 11:20 p.m.