Description Usage Arguments Value
A Function to fit multistate ABM for simulation 2
1 2 3 |
num_mcmc |
The number of MCMC iterations |
num_particles |
The number of particles to use in particle filter |
data |
num_agents X time_points x 2 array of observed locations |
m_mu1 |
Prior values for step size mean for state 1: # mu ~ N(m_mu, sigmasq_m) |
m_mu2 |
Prior values for step size mean for state 2: # mu ~ N(m_mu, sigmasq_m) |
sigmasq_m1 |
Prior values for step size variance for state 1: # mu ~ N(m_mu, sigmasq_m) |
sigmasq_m2 |
Prior values for step size variance for state 2: # mu ~ N(m_mu, sigmasq_m) |
nu |
Prior values for step size standard deviation: sigmasq_u ~ IG(nu/2,sigmasq0 * nu / 2) |
sigmasq01 |
Prior values for step size standard deviation for state 1: sigmasq_u ~ IG(nu/2,sigmasq0 * nu / 2) |
sigmasq02 |
Prior values for step size standard deviation for state 2: sigmasq_u ~ IG(nu/2,sigmasq0 * nu / 2) |
nu_eps |
Prior values for observation error: # sigmasq_eps ~ IG(nu_eps/2,nu_eps * sigmasq0_eps / 2) |
sigmasq0_eps |
Prior values for observation error: # sigmasq_eps ~ IG(nu_eps/2,nu_eps * sigmasq0_eps / 2) |
mu_theta_mean |
Prior values for projected normal: mu_theta ~ N(mu_theta_mean, var_theta) |
var_theta |
Prior values for projected normal: mu_theta ~ N(mu_theta_mean, var_theta) |
A list containing the path and the log probability of the path
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.