| rfModel | R Documentation | 
Estimate coefficients for an index via the random forest approach (generic method)
rfModel(estimator, rf_df, rf_spec, ntrees = 200, seed = 1, ...)
| estimator | Type of model to estimates (pdp) | 
| rf_df | Transactions dataset from hedCreateSales() | 
| rf_spec | Model specification ('formula' object) | 
| ntrees | [200] Set number of trees to use | 
| seed | [1] Random seed for reproducibility | 
| ... | Additional arguments | 
'rfmodel' object: model object of the estimator (ex.: 'lm')
‘estimator' argument must be in a class of ’pdp' This function is not generally called directly, but rather from 'hpiModel()'
 # Load example data
 data(ex_sales)
 # Create hedonic data
 hed_data <- hedCreateTrans(trans_df = ex_sales,
                           prop_id = 'pinx',
                           trans_id = 'sale_id',
                           price = 'sale_price',
                           date = 'sale_date',
                           periodicity = 'monthly')
 # Estimate Model
 rf_model <- rfModel(estimator = structure('pdp', class = 'pdp'),
                     rf_df = hed_data,
                     rf_spec = as.formula(log(price) ~ baths + tot_sf),
                     ntrees = 10,
                     sim_count = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.