Description Usage Arguments Value References Examples
View source: R/InfCriteriaCalculation.R
A function that calculates information criteria given log-likelihood, number of clusters, dimension of dataset, and number of observations, and the probability
1 2 3 4 5 6 7 | InfCriteriaCalculation(
loglikelihood,
nClusters,
dimensionality,
observations,
probability
)
|
loglikelihood |
A negative value of class "numeric" indicating the log-likelihood |
nClusters |
A positive integer indicating the number of clusters |
dimensionality |
A positive integer indicating the dimensionality of dataset |
observations |
A positive integer indicating the number of observations |
probability |
A vector indicating the probability of each cluster |
Returns an S3 object of class InfCriteria with results.
BICresults - A value of class "numeric" indicating BIC value
AICresults - A value of class "numeric" indicating AIC value
ICLresults - A value of class "numeric" indicating ICL value
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, New York, NY, USA, pp. 267–281. Springer Verlag. Link
Biernacki, C., G. Celeux, and G. Govaert (2000). Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22. Link
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461–464. Link.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # Using GeneCounts dataset available with package
dim(GeneCounts)
# Calculate information criteria value
InfCriteriaResults <- InfCriteriaCalculation(loglikelihood = -5080,
nClusters = 2,
dimensionality = ncol(GeneCounts),
observations = nrow(GeneCounts),
probability = c(0.5, 0.5))
InfCriteriaResults$BICresults
## Not run:
# Obtain an external sample RNAseq dataset
library(MBCluster.Seq)
data("Count")
dim(Count)
# Calculate information criteria value
InfCriteriaResults <- InfCriteriaCalculation(loglikelihood = -5080,
nClusters = 2,
dimensionality = ncol(Count),
observations = nrow(Count),
probability = c(0.5, 0.5))
InfCriteriaResults$BICresults
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.