tests/testthat/test-Binomial_American_Greeks.R

test_that("Binomial_American_Greeks is correct", {

  # We check the Greeks by also computing the derivative with finite difference
  # and comparing the results

  number_of_runs <- 50

  definition_of_greeks <-
    data.frame(greek = "delta", start = "fair_value", param = "initial_price") %>%
    add_row(greek = "epsilon", start = "fair_value", param = "dividend_yield") %>%
    add_row(greek = "gamma", start = "delta", param = "initial_price") %>%
    add_row(greek = "rho", start = "fair_value", param = "r") %>%
    add_row(greek = "theta", start = "fair_value", param = "time_to_maturity") %>%
    add_row(greek = "vega", start = "fair_value", param = "volatility")

  error <- numeric(number_of_runs)

  set.seed(42)

  epsilon <- 1e-5

  for(i in 1:number_of_runs) {

    # the parameters are chosen at random
    initial_price <- runif(1, 90, 110)
    exercise_price <- runif(1, 90, 110)
    r <- runif(1, -0.01, 0.1)
    time_to_maturity <- runif(1, 0.2, 6)
    dividend_yield <- runif(1, 0, 0.1)
    volatility <- runif(1, 0.01, 1)
    model <- "Black_Scholes"
    payoff <- sample(c("call", "put"), 1)
    greek <- sample(definition_of_greeks$greek, 1)
    param <-
      definition_of_greeks[definition_of_greeks$greek == greek, "param"] %>%
      as.character()
    start <-
      definition_of_greeks[definition_of_greeks$greek == greek, "start"] %>%
      as.character()

    Vals <-
      Greeks(
        option_type = "American",
        initial_price = initial_price,
        exercise_price = exercise_price,
        r = r,
        time_to_maturity = time_to_maturity,
        volatility = volatility,
        dividend_yield = dividend_yield,
        payoff = payoff,
        greek = greek
      )

    ## theta is minus the derivative of fair_value w.r.t. time_to_maturity
    if (greek == "theta") {
      Vals = -Vals
    }

    F <- function(epsilon) {
      assign(param, get(param) + epsilon)
      Greeks(
        option_type = "American",
        initial_price = initial_price,
        exercise_price = exercise_price,
        r = r,
        time_to_maturity = time_to_maturity,
        volatility = volatility,
        dividend_yield = dividend_yield,
        payoff = payoff,
        greek = start
      )
    }

    Vals_fd <- (F(epsilon) - F(-epsilon)) / (2 * epsilon)

    ## lambda is delta * initial_price / fair_value
    if(greek == "lambda") {
      Vals_fd <- Vals_fd *  initial_price /
        Greeks(
          option_type = "American",
          initial_price = initial_price,
          exercise_price = exercise_price,
          r = r,
          time_to_maturity = time_to_maturity,
          volatility = volatility,
          dividend_yield = dividend_yield,
          payoff = payoff,
          greek = "fair_value"
        )
    }

    error[i] <-
      min(abs(Vals - Vals_fd)/(abs(Vals + epsilon)),
          abs(Vals - Vals_fd))

  }

  expect(
    max(error) < 0.1,
    failure_message = "The results of Binomial_American_Greeks.R cannot be
    confirmend by finite difference")

})

test_that("Binomial_American_Greeks fair_value is correct", {

  # We compare the values of Binomial_Amerian_Greeks.cpp with the values of
  # Binomial_Americian_Greeks_test

  Binomial_American_Greeks_test <-
    function(initial_price = 50,
             exercise_price = 50,
             r = 0.1,
             time_to_maturity = 5/12,
             volatility = 0.4,
             dividend_yield = 0,
             payoff = "put",
             steps = 5) {

      ## the payoff function ##

      if (payoff == "call") {
        payoff <- function(x, exercise_price) {
          return(max(0, x - exercise_price))
        }
      } else if (payoff == "put") {
        payoff <- function(x, exercise_price) {
          return(max(0, exercise_price - x))
        }
      }

      underlying <- matrix(NA, nrow = steps + 1, ncol = steps + 1)
      american_option_value <- matrix(NA, nrow = steps + 1, ncol = steps + 1)
      european_option_value <- matrix(NA, nrow = steps + 1, ncol = steps + 1)

      # dt is the length of the time step
      dt <- time_to_maturity/steps
      # size of one step up or down
      up <- exp(volatility * sqrt(dt))
      down <- exp(-volatility * sqrt(dt))
      # p is the probability of going one step up
      p <- (exp((r-dividend_yield)*dt) - down) / (up - down)
      # the tree is generated
      underlying[1, 1] <- initial_price

      for (j in 2:(steps+1)) {
        underlying[1, j] <- up * underlying[1, j-1]
        for (i in 2:j) {
          underlying[i, j] <- down * underlying[i-1, j-1]
        }
      }
      # initializing with the prices
      for(i in 1:(steps+1)) {
        american_option_value[i, steps + 1] <- exp(-r*steps*dt) * payoff(underlying[i, steps + 1], exercise_price)
        european_option_value[i, steps + 1] <- exp(-r*steps*dt) * payoff(underlying[i, steps + 1], exercise_price)
      }

      for (j in steps:1) {
        for (i in 1:j) {
          american_option_value[i, j] <-
            max(
              (american_option_value[i, j+1] * p + american_option_value[i+1, j+1] * (1-p)),
              exp(-r*(j-1)*dt) * payoff(underlying[i, j], exercise_price))
          european_option_value[i, j] <-
            (european_option_value[i, j+1] * p + european_option_value[i+1, j+1] * (1-p)) * exp(-r*dt)
        }
      }

      return(american_option_value[1, 1])

    }

  number_of_runs <- 50

  error <- numeric(number_of_runs)

  set.seed(42)

  epsilon <- 1e-9

  for(i in 1:number_of_runs) {

    # the parameters are chosen at random
    initial_price <- runif(1, 90, 110)
    exercise_price <- runif(1, 90, 110)
    r <- runif(1, -0.01, 0.1)
    time_to_maturity <- runif(1, 0.2, 6)
    dividend_yield <- runif(1, 0, 0.1)
    volatility <- runif(1, 0.01, 1)
    payoff <- sample(c("call", "put"), 1)

    error[i] <- abs(
      Binomial_American_Greeks_cpp(
        initial_price = initial_price,
        exercise_price = exercise_price,
        r = r,
        time_to_maturity = time_to_maturity,
        volatility = volatility,
        dividend_yield = dividend_yield,
        payoff = payoff,
        steps = 5
      )[1] -
        Binomial_American_Greeks_test(
          initial_price = initial_price,
          exercise_price = exercise_price,
          r = r,
          time_to_maturity = time_to_maturity,
          volatility = volatility,
          dividend_yield = dividend_yield,
          payoff = payoff,
          steps = 5
        )
    )

  }
  expect(max(error) < 1e-5,
         failure_message = "The results of Binomial_American_Greeks.R cannot be
    confirmend by Binomial_Americian_Greeks_test")

})
anselmhudde/greeks documentation built on April 14, 2025, 3:56 p.m.