gmr <- gmr_csv %>%
set_names ( c("country_code", "google_country_name",
"google_region_name_1",
"google_region_name_2",
"date", "retail", "grocery",
"parks", "transit", "workplaces", "residential")
) %>%
mutate ( google_region_name_1 = ifelse (
#La Réunion is part of France and data can be found about it
#in Eurostat and French national statistics
country_code == "RE",
yes = "La Réunion", no = google_region_name_1),
google_country_name = ifelse (
country_code == "RE",
yes = "France",no = google_country_name ),
country_code = ifelse (
## La Réunion is also known as Réunion and it has a
## ISO-3166-1 code even though it is part of France
country_code == "RE",
yes = "FR", no = country_code )
)
## First joining with valid NUTS codes ------------
## When there is no region name, use the country name
## And preferably the English country name, not the national language one
data("all_valid_nuts_codes", package = 'regions')
all_valid_nuts_codes
nuts_gmr <- all_valid_nuts_codes %>%
mutate ( country_code = get_country_code(geo) ) %>%
distinct ( country_code ) %>%
left_join ( gmr,
by = 'country_code' ) %>%
mutate ( google_region_name_1 = case_when (
is.na(google_region_name_1) & is.na(google_region_name_2) ~ google_country_name,
TRUE ~ google_region_name_1
)) %>%
pivot_longer ( cols = c("google_region_name_1",
"google_region_name_2"),
names_to = "google_region_level",
values_to = "google_region_name") %>%
mutate ( google_name = normalize_text (google_region_name )) %>%
filter ( !is.na(google_name) )
names ( nuts_lau_2019 )
nuts_lau_2019 %>%
select ( code_2016, lau_code, population ) %>%
unite ( code_2016, c("code_2016", "lau_code"), sep = '_')
## latvia and slovenia are organized by municipality
european_gmr_by_municipality <- nuts_gmr %>%
left_join ( google_nuts_matchtable,
by = c("country_code",
"google_region_level", "google_region_name")) %>%
filter ( typology == 'nuts_level_3_lau') %>%
left_join ( nuts_lau_2019 %>%
select ( code_2016, lau_code, population ) %>%
unite ( code_2016, c("code_2016", "lau_code"),
sep = '_'),
by = 'code_2016') %>%
select ( all_of (c("country_code", "date",
"code_2016", "population",
"retail", "grocery", "parks",
"transit", "workplaces", "residential"))) %>%
group_by ( code_2016 ) %>%
arrange ( code_2016, date ) %>%
fill ( # downup uses first the upper (earlier) date, then
# the lower (later) date to fill missing blanks observations
# by date.
retail, grocery, parks, transit, workplaces, residential,
.direction = "downup")
google_nuts_matchtable %>%
filter ( country_code == "EE")
european_gmr_by_nuts3_ext <- nuts_gmr %>%
left_join ( google_nuts_matchtable,
by = c("country_code",
"google_region_level", "google_region_name")) %>%
filter ( country_code %in% c("EE", "PT"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.