fitGlbin3_CV: Group Lasso Penalised Logistic Regression Estimation (v3)

Description Usage Arguments Details

View source: R/gl-bin-fit3.R

Description

Uses the version 3 of glbinc with orthonormalisation

Usage

1
2
3
4
5
6
fitGlbin3_CV(Q, dfmax = ncol(Q$X) * 1.1, lambda = NULL,
  lambda.min = 0.001, nlambda = 100, log_linear_lambda = FALSE,
  verb = 0, add_intercept = TRUE, quads = NULL, mc.cores = 3,
  sparse = FALSE, orthonormalise = TRUE,
  standardize = !orthonormalise, use_glm_in_lmax = TRUE,
  maxiter = 10000, ...)

Arguments

Q

Model object

dfmax

stop if dfmax significant terms reached

lambda

penalty vector. if missing, will be computed

lambda.min

If lambda is to be computed, min. lambda will be max.lambda * lambda.min

nlambda

steps to generate for lambda vector

log_linear_lambda

log-linear or linear

verb

Verbosity

add_intercept

Add overall intercept?

quads

The cross validation quadrats

mc.cores

mclapply mc.cores

sparse

use Sparse Matrix

orthonormalise

Orthonormalise X before computations?

standardize

Standardize X before computations? (overriden by orthonormalise)

use_glm_in_lmax

use R-s own glm function (non-sparse) to determine max. lambda

...

passed on to

Details

Basically just a wrapper for package glbinc for estimating group penalised binomial regression. If 'quads' (list of sub-windows, see 'split_window'-function) are given, fits the CV-models as well. Here the mc.cores -parameter is used.


antiphon/PenGE documentation built on July 31, 2019, 10:01 p.m.