Description Usage Arguments Details
Uses the version 3 of glbinc with orthonormalisation
1 2 3 4 5 6 | fitGlbin3_CV(Q, dfmax = ncol(Q$X) * 1.1, lambda = NULL,
lambda.min = 0.001, nlambda = 100, log_linear_lambda = FALSE,
verb = 0, add_intercept = TRUE, quads = NULL, mc.cores = 3,
sparse = FALSE, orthonormalise = TRUE,
standardize = !orthonormalise, use_glm_in_lmax = TRUE,
maxiter = 10000, ...)
|
Q |
Model object |
dfmax |
stop if dfmax significant terms reached |
lambda |
penalty vector. if missing, will be computed |
lambda.min |
If lambda is to be computed, min. lambda will be max.lambda * lambda.min |
nlambda |
steps to generate for lambda vector |
log_linear_lambda |
log-linear or linear |
verb |
Verbosity |
add_intercept |
Add overall intercept? |
quads |
The cross validation quadrats |
mc.cores |
mclapply mc.cores |
sparse |
use Sparse Matrix |
orthonormalise |
Orthonormalise X before computations? |
standardize |
Standardize X before computations? (overriden by orthonormalise) |
use_glm_in_lmax |
use R-s own glm function (non-sparse) to determine max. lambda |
... |
passed on to |
Basically just a wrapper for package glbinc for estimating group penalised binomial regression. If 'quads' (list of sub-windows, see 'split_window'-function) are given, fits the CV-models as well. Here the mc.cores -parameter is used.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.