knitr::opts_chunk$set(echo = TRUE)
library(SimplyAgree)
#![Sticker](https://raw.githubusercontent.com/arcaldwell49/SimplyAgree/master/images/sticker.png)

Artwork courtesy of Chelsea Parlett Pelleriti

DOI Codecov test coverage R-CMD-check documentation R-CMD-check

Please see the package's website for updates, vignettes, and other details about the package.

Background

SimplyAgree is an R package, and jamovi module, created to make agreement and reliability analyses easier for the average researcher. The two primary functions are agreement_limit and tolerance_limit for assessing "agreement" between two methods. Reliability can be assessed via the reli_stats, or reli_aov, function. In addition, blandPowerCurve could be utilized for power analysis purposes for studies of agreement.

Installing SimplyAgree

You can install the most up-to-date version of SimplyAgree from GitHub with:

devtools::install_github("arcaldwell49/SimplyAgree")

Contributing

We are happy to receive bug reports, suggestions, questions, and (most of all) contributions to fix problems and add features. Pull Requests for contributions are encouraged.

Here are some simple ways in which you can contribute (in the increasing order of commitment):

Code of Conduct

Please note that the concurve project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

References

The functions in this package are largely based on the following works:

Francq, B. G., Berger, M., & Boachie, C. (2020). To tolerate or to agree: A tutorial on tolerance intervals in method comparison studies with BivRegBLS R Package. Statistics in Medicine, 39(28), 4334-4349. https://doi.org/10.1002/sim.8709

Francq, B. G., Lin, D., & Hoyer, W. (2019). Confidence, prediction, and tolerance in linear mixed models. Statistics in Medicine, 38(30), 5603-5622. https://doi.org/10.1002/sim.8386

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255 - 268. https://doi.org/10.2307/2532051

Shieh, G. (2019). Assessing agreement between two methods of quantitative measurements: Exact test procedure and sample size calculation. Statistics in Biopharmaceutical Research, 1-8. https://doi.org/10.1080/19466315.2019.1677495

Parker, R. A., et al (2016). Application of mixed effects limits of agreement in the presence of multiple sources of variability: exemplar from the comparison of several devices to measure respiratory rate in COPD patients. Plos one, 11(12), e0168321. https://doi.org/10.1371/journal.pone.0168321

Zou, G. Y. (2013). Confidence interval estimation for the Bland–Altman limits of agreement with multiple observations per individual. Statistical methods in medical research, 22(6), 630-642. https://doi.org/10.1177/0962280211402548

Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. The Journal of Strength & Conditioning Research, 19(1), 231-240.

Lu, Meng-Jie, et al (2016). "Sample Size for Assessing Agreement between Two Methods of Measurement by Bland−Altman Method" The International Journal of Biostatistics, 12(2), https://doi.org/10.1515/ijb-2015-0039

King, TS and Chinchilli, VM. (2001). A generalized concordance correlation coefficient for continuous and categorical data. Statistics in Medicine, 20, 2131:2147.

King, TS, Chinchilli, VM, and Carrasco, JL. (2007). A repeated measures concordance correlation coefficient. Statistics in Medicine, 26, 3095:3113.

Carrasco, JL, et al. (2013). Estimation of the concordance correlation coefficient for repeated measures using SAS and R. Computer Methods and Programs in Biomedicine, 109, 293-304.



arcaldwell49/SimplyAgree documentation built on March 26, 2024, 2:26 p.m.