hlmBayes_sp | R Documentation |
Fits a univariate Gaussian spatial regression model: Y(s)=x(s)^T\beta+Z(s)+\epsilon
. Parameters not listed are optional.
hlmBayes_sp(
y = NULL,
coords = NULL,
niter = NULL,
nburn = NULL,
report = NULL,
a.sigma = NULL,
b.sigma = NULL,
a.tau = NULL,
b.tau = NULL,
lower.phi = NULL,
upper.phi = NULL,
cov.type = NULL,
verbose = TRUE,
trgtFn.compute = FALSE,
digits = 3
)
y |
observed response (order |
coords |
coordinates for observed process (order |
niter |
number of MCMC iterations |
nburn |
number of burn-in samples |
report |
batch length |
a.sigma |
shape parameter for inverse-gamma prior on |
b.sigma |
scale parameter for inverse-gamma prior on |
a.tau |
shape parameter for inverse-gamma prior on |
b.tau |
scale parameter for inverse-gamma prior on |
lower.phi |
lower limit for uniform prior on |
upper.phi |
upper limit for uniform prior on |
cov.type |
covariance type (three available choices: Gaussian, Mat\'ern( |
verbose |
if true prints output for batches |
trgtFn.compute |
compute posterior |
digits |
rounding digits |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.