hlmBayes_sp: A spatial hierarchical Bayes Markov Chain Monte Carlo sampler

View source: R/hlmBayes_sp.R

hlmBayes_spR Documentation

A spatial hierarchical Bayes Markov Chain Monte Carlo sampler

Description

Fits a univariate Gaussian spatial regression model: Y(s)=x(s)^T\beta+Z(s)+\epsilon. Parameters not listed are optional.

Usage

hlmBayes_sp(
  y = NULL,
  coords = NULL,
  niter = NULL,
  nburn = NULL,
  report = NULL,
  a.sigma = NULL,
  b.sigma = NULL,
  a.tau = NULL,
  b.tau = NULL,
  lower.phi = NULL,
  upper.phi = NULL,
  cov.type = NULL,
  verbose = TRUE,
  trgtFn.compute = FALSE,
  digits = 3
)

Arguments

y

observed response (order L x 1)

coords

coordinates for observed process (order L x 2)

niter

number of MCMC iterations

nburn

number of burn-in samples

report

batch length

a.sigma

shape parameter for inverse-gamma prior on \sigma^2

b.sigma

scale parameter for inverse-gamma prior on \sigma^2

a.tau

shape parameter for inverse-gamma prior on \tau^2

b.tau

scale parameter for inverse-gamma prior on \tau^2

lower.phi

lower limit for uniform prior on \phi

upper.phi

upper limit for uniform prior on \phi

cov.type

covariance type (three available choices: Gaussian, Mat\'ern(\nu=3/2)), Mat\'ern(\nu=5/2)

verbose

if true prints output for batches

trgtFn.compute

compute posterior

digits

rounding digits


arh926/spWombling documentation built on April 14, 2025, 4 p.m.